1
1
# helpers for downloading GDS data for local testing
2
- require(dracarys )
2
+ require(dracarys , include.only = " ica_token_validate " )
3
3
require(dplyr )
4
- require(readr )
5
4
require(rportal , include.only = " portaldb_query_workflow" )
6
5
require(glue , include.only = " glue" )
7
6
require(here , include.only = " here" )
8
7
8
+ # make sure you have logged into AWS and ICA
9
+ c(" AWS_ACCESS_KEY_ID" , " AWS_SECRET_ACCESS_KEY" , " AWS_REGION" ) | >
10
+ rportal :: envvar_defined() | >
11
+ stopifnot()
12
+ icav1_token <- Sys.getenv(" ICA_ACCESS_TOKEN" ) | >
13
+ dracarys :: ica_token_validate()
14
+ # this helps keep annoying reticulate prompt away
15
+ Sys.setenv(RETICULATE_PYTHON = Sys.getenv(" CONDA_PYTHON_EXE" ))
9
16
# grab rnasum workflow metadata from Athena
10
17
athena_rnasum <- function (sbj ) {
11
18
q_quote <- shQuote(paste(glue(" rnasum__{sbj}" ), collapse = " |" ))
12
- query1 <- glue(' WHERE REGEXP_LIKE("wfr_name", {q_quote});' )
19
+ query1 <- glue(' WHERE "type_name" = \' rnasum \' AND REGEXP_LIKE("wfr_name", {q_quote});' )
13
20
rportal :: portaldb_query_workflow(query1 )
14
21
}
15
22
16
23
athena_lims <- function (libid ) {
17
- query1 <- glue(" WHERE REGEXP_LIKE(\ " library_id\ " , '{libid}');" )
24
+ query1 <- glue(' WHERE "type" = \' WTS \' AND REGEXP_LIKE("library_id", \ ' {libid}\ ' );' )
18
25
rportal :: portaldb_query_limsrow(query1 )
19
26
}
20
27
@@ -37,9 +44,9 @@ rnasum_download <- function(gdsdir, outdir, token, page_size = 200, regexes) {
37
44
}
38
45
39
46
# SBJ IDs of interest
40
- sbj <- " SBJ05637 "
41
- lib <- " L2401376 "
42
- date1 <- " 2024-09-16 "
47
+ sbj <- " SBJ05690 "
48
+ lib <- " L2401448 "
49
+ date1 <- " 2024-09-29 "
43
50
lims_raw <- athena_lims(lib )
44
51
pmeta_raw <- athena_rnasum(sbj ) | >
45
52
rportal :: meta_rnasum(status = " Failed" )
@@ -71,7 +78,6 @@ rnasum_file_regex <- tibble::tribble(
71
78
" manta\\ .tsv$" , " MantaTsvFile" ,
72
79
" mapping_metrics\\ .csv$" , " MapMetricsFile"
73
80
)
74
- token <- dracarys :: ica_token_validate()
75
81
outdir <- here :: here(" nogit/patient_data" )
76
82
77
83
# melt gds_indir columns to get a single column with paths to gds directories
@@ -81,7 +87,7 @@ meta_rnasum <- pmeta |>
81
87
dplyr :: select(SubjectID , LibraryID , rnasum_dataset , folder_type , gds_indir ) | >
82
88
dplyr :: rowwise() | >
83
89
dplyr :: mutate(
84
- down = list (rnasum_download(gdsdir = gds_indir , outdir = outdir , token = token , regexes = rnasum_file_regex ))
90
+ down = list (rnasum_download(gdsdir = gds_indir , outdir = outdir , token = icav1_token , regexes = rnasum_file_regex ))
85
91
) | >
86
92
dplyr :: ungroup()
87
93
0 commit comments