-
Notifications
You must be signed in to change notification settings - Fork 0
/
6p_GaussianAnsatzB.mw
658 lines (658 loc) · 219 KB
/
6p_GaussianAnsatzB.mw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
<?xml version="1.0" encoding="UTF-8"?>
<Worksheet>
<Version major="16" minor="0"/>
<Label-Scheme value="2" prefix=""/>
<View-Properties presentation="false"></View-Properties>
<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="800" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/>
<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/>
<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/>
<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/>
<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/>
<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/>
<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/>
<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/>
<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/>
<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/>
<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/>
<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/>
<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/>
<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/>
<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/>
<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/>
<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/>
<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/>
<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/>
<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/>
<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/>
<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/>
<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/>
</Styles>
<Task-table>
<Task-category name="<default>">
</Task-category>
</Task-table>
<Task>
</Task>
<Group labelreference="L682" drawlabel="true">
<Input>
<Text-field style="Title" layout="Title">NCVA for LLE (Temporal Tweezing) - 6-parameter Gaussian Ansatz + Phi</Text-field>
</Input>
</Group><Presentation-Block>
<Group view="presentation" hide-input="false" hide-output="true" inline-output="false" labelreference="L667" drawlabel="true">
<Input>
<Text-field style="Text" layout="Normal">Ansatz of the form u(x,t) = A(t,z) * exp(I*theta(t,z)) - z is fast time (tau is slow time) - </Text-field>
</Input>
</Group></Presentation-Block>
<Group labelreference="L673" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">restart;</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">interface(showassumed=0): assume(Ur, real): assume(Ui, real): </Text-field>
</Input>
</Group>
<Group labelreference="L705" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="Ustar := Ur+I*Ui:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZELUkjbWlHRiQ2JlEmVXN0YXJGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi5RIn5GJ0YvL0Y2USdub3JtYWxGJy8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRk4tRjk2LlEqJmNvbG9uZXE7RidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGVUY4LUYsNiZRI1VyRidGL0YyRjVGOC1GOTYuUSIrRidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjIyMjIyMmVtRicvRlBGaG5GOC1GLDYmUSJJRidGL0YyRjUtRjk2LlEiKkYnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjE2NjY2NjdlbUYnL0ZQRmFvLUYsNiZRI1VpRidGL0YyRjUtRjk2LlEiOkYnRi9GPEY+RkBGQkZERkZGSEZKRlRGVkY4LUYsNiZRJ1VTdGFyY0YnRi9GMkY1RjhGUUY4RldGOC1GOTYuUSomdW1pbnVzMDtGJ0YvRjxGPkZARkJGREZGRkhGSkZnbkZpbkY4RmpuRl1vRmNvRmZvRjgtRiw2JlEnYXNzdW1lRidGL0YyRjUtSShtZmVuY2VkR0YkNiUtRiM2Ky1GLDYmUSN1MEYnRi9GMkY1LUY5Ni5RIixGJ0YvRjxGPi9GQUY0RkJGREZGRkhGSkZML0ZQUSwwLjMzMzMzMzNlbUYnRjgtRiw2JlEoY29tcGxleEYnRi9GMkY1LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRidGLy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStleGVjdXRhYmxlR0YxRjwvRjZRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRlxyRmZvRmNxRi9GZnFGaXFGPA==">Qyg+SSZVc3Rhckc2IiwmSSNVckdGJSIiIiomXiNGKEYoSSNVaUdGJUYoRighIiI+SSdVU3RhcmNHRiUsJkYnRigqJl4jRixGKEYrRihGKEYsLUknYXNzdW1lRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiRJI3UwR0YlSShjb21wbGV4R0Y1Riw=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L672" drawlabel="true">
<Input>
<Text-field style="Maple Input" executable="false" layout="Normal"><Font executable="false">Ansatz of the form u(x,t) = A(x,t) * exp(I*theta(x,t)) z-> t, t-> x</Font></Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">A := a(z)*exp(-(t-xi(z))^2/(2*(s(z))^2)): </Text-field>
</Input>
</Group>
<Group labelreference="L706" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="theta := b(z)+c(z)*(t-xi(z))+d(z)*(t-xi(z))^2:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY7LUkjbWlHRiQ2JlEmdGhldGFGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRjQtSSNtb0dGJDYuUSJ+RidGMkY1LyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGSy1GODYuUSomY29sb25lcTtGJ0YyRjVGO0Y9Rj9GQUZDRkVGRy9GSlEsMC4yNzc3Nzc4ZW1GJy9GTUZSRjctRiw2JlEiYkYnL0YwUSV0cnVlRicvRjNRLGJvbGQtaXRhbGljRidGNS1JKG1mZW5jZWRHRiQ2JS1GIzYoLUYsNiZRInpGJ0ZXRllGNS8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbkYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjFGMkY1RjJGNS1GODYuUSIrRidGMkY1RjtGPUY/RkFGQ0ZFRkcvRkpRLDAuMjIyMjIyMmVtRicvRk1GaW8tRiw2JlEiY0YnRldGWUY1RmVuLUY4Ni5RIipGJ0YyRjVGO0Y9Rj9GQUZDRkVGRy9GSlEsMC4xNjY2NjY3ZW1GJy9GTUZicC1GZm42JS1GIzYrLUYsNiZRInRGJ0ZXRllGNS1GODYuUSomdW1pbnVzMDtGJ0YyRjVGO0Y9Rj9GQUZDRkVGR0Zob0Zqby1GLDYmUSN4aUYnRi9GMkY1RmVuRl1vRmBvRmNvRjJGNUYyRjVGZW8tRiw2JlEiZEYnRldGWUY1RmVuRl5wRmRwLUY4Ni5RIl5GJ0YyRjVGO0Y9Rj9GQUZDRkVGRy9GSlEsMC4xMTExMTExZW1GJy9GTUZocS1JI21uR0YkNiVRIjJGJ0YyRjVGNy1GODYuUSI6RidGMkY1RjtGPUY/RkFGQ0ZFRkdGUUZTRl1vRmBvRmNvRjJGNQ==">QyQ+SSZ0aGV0YUc2IiwoLUkiYkdGJTYjSSJ6R0YlIiIiKiYtSSJjR0YlRilGKywmSSJ0R0YlRistSSN4aUdGJUYpISIiRitGKyomLUkiZEdGJUYpRitGLyIiI0YrRjM=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L707" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="phi := alpha*exp(-(t-tau0)^2/(2*beta^2)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYwLUkjbWlHRiQ2JlEkcGhpRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSVib2xkRicvJStmb250d2VpZ2h0R0Y0LUkjbW9HRiQ2LlEifkYnRjJGNS8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRkstRjg2LlEqJmNvbG9uZXE7RidGMkY1RjtGPUY/RkFGQ0ZFRkcvRkpRLDAuMjc3Nzc3OGVtRicvRk1GUkY3LUYsNiZRJmFscGhhRidGL0YyRjUtRjg2LlEiKkYnRjJGNUY7Rj1GP0ZBRkNGRUZHL0ZKUSwwLjE2NjY2NjdlbUYnL0ZNRmVuLUYsNiZRJGV4cEYnRi9GMkY1LUkobWZlbmNlZEdGJDYlLUYjNi0tRjg2LlEqJnVtaW51czA7RidGMkY1RjtGPUY/RkFGQ0ZFRkcvRkpRLDAuMjIyMjIyMmVtRicvRk1GY28tRltvNiUtRiM2Ki1GLDYmUSJ0RicvRjBRJXRydWVGJy9GM1EsYm9sZC1pdGFsaWNGJ0Y1Rl9vLUYsNiZRJXRhdTBGJ0ZccEZecEY1LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrZXhlY3V0YWJsZUdGMUYyRjVGMkY1LUY4Ni5RIl5GJ0YyRjVGO0Y9Rj9GQUZDRkVGRy9GSlEsMC4xMTExMTExZW1GJy9GTUZfcS1JI21uR0YkNiVRIjJGJ0YyRjUtRjg2LlEiL0YnRjJGNUY7Rj0vRkBGXXBGQUZDRkVGR0ZaRmZuLUZbbzYlLUYjNixGYXFGVy1GLDYmUSViZXRhRidGL0YyRjVGW3FGYXFGY3BGZnBGaXBGMkY1RjJGNUZjcEZmcEZpcEYyRjVGMkY1LUY4Ni5RIjpGJ0YyRjVGO0Y9Rj9GQUZDRkVGR0ZRRlNGY3BGZnBGaXBGMkY1">QyQ+SSRwaGlHNiIqJkkmYWxwaGFHRiUiIiItSSRleHBHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2IywkKiYsJkkidEdGJUYoSSV0YXUwR0YlISIiIiIjLUkiL0dGKzYjLCQqJEklYmV0YUdGJUY1RjVGKEY0RihGNA==</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L708" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="phidot1 := diff(phi, t):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYvLUkjbWlHRiQ2JlEocGhpZG90MUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSxib2xkLWl0YWxpY0YnLyUrZm9udHdlaWdodEdRJWJvbGRGJy1JI21vR0YkNi5RIn5GJy9GM0Y3RjUvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj8vJSlzdHJldGNoeUdGPy8lKnN5bW1ldHJpY0dGPy8lKGxhcmdlb3BHRj8vJS5tb3ZhYmxlbGltaXRzR0Y/LyUnYWNjZW50R0Y/LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTi1GOTYuUSomY29sb25lcTtGJ0Y8RjVGPUZARkJGREZGRkhGSi9GTVEsMC4yNzc3Nzc4ZW1GJy9GUEZVRjgtRiw2JlElZGlmZkYnRi9GMkY1LUkobWZlbmNlZEdGJDYlLUYjNiotRiw2JlEkcGhpRicvRjBGP0Y8RjUtRjk2LlEiLEYnRjxGNUY9L0ZBRjFGQkZERkZGSEZKRkwvRlBRLDAuMzMzMzMzM2VtRictRiw2JlEidEYnRi9GMkY1LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrZXhlY3V0YWJsZUdGP0Y8RjVGPEY1LUY5Ni5RIjpGJ0Y8RjVGPUZARkJGREZGRkhGSkZURlZGOEZmb0Zpb0ZccEY8RjU=">QyQ+SShwaGlkb3QxRzYiLUklZGlmZkclKnByb3RlY3RlZEc2JEkkcGhpR0YlSSJ0R0YlISIi</Equation></Text-field>
</Input>
</Group><Presentation-Block>
<Group view="presentation" hide-input="false" hide-output="true" inline-output="false" labelreference="L655" drawlabel="true">
<Input>
<Text-field style="Maple Input" executable="false" layout="Normal"><Equation executable="false" style="Maple Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2I1EhRicvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJy8lJWJvbGRHUSZmYWxzZUYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjQvJTBmb250X3N0eWxlX25hbWVHUSgyRH5NYXRoRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYn">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field>
</Input>
</Group></Presentation-Block>
<Group labelreference="L650" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">V:= Delta + phidot1^2 - 2*abs(u0)^2:</Text-field>
</Input>
</Group>
<Group labelreference="L646" drawlabel="true">
<Input>
<Text-field style="Maple Input" executable="false" layout="Normal"><Font executable="false">New Lagrangian:</Font></Text-field>
</Input>
</Group>
<Group labelreference="L685" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="LA := A^2*(diff(theta, z))+(diff(A, t))^2+A^2*(diff(theta, t))^2-(1/2)*A^4+Delta*A^2+phidot1^2*A^2-2*abs(u0)^2*A^2+2*(diff(phi, t))*A^2*(diff(theta, t)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZXLUkjbWlHRiQ2JlEjTEFGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi5RIn5GJ0YvL0Y2USdub3JtYWxGJy8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRk4tRjk2LlEqJmNvbG9uZXE7RidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGVUY4LUklbXN1cEdGJDYlLUYsNiZRIkFGJ0YvRjJGNS1GIzYmLUkjbW5HRiQ2JVEiMkYnRi9GPEYvRjJGNS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjk2LlEnJnNkb3Q7RidGL0Y8Rj5GQEZCRkRGRkZIRkpGTEZPLUYsNiZRJWRpZmZGJ0YvRjJGNS1JKG1mZW5jZWRHRiQ2JS1GIzYrLUYsNiZRJnRoZXRhRidGLy9GM0YxRjwtRjk2LlEiLEYnRi9GPEY+L0ZBRjRGQkZERkZGSEZKRkwvRlBRLDAuMzMzMzMzM2VtRictRiw2JlEiekYnRi9GMkY1LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRidGLy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStleGVjdXRhYmxlR0YxLyUwZm9udF9zdHlsZV9uYW1lR1EpMkR+SW5wdXRGJ0Y8L0Y2USVib2xkRicvJStmb250d2VpZ2h0R0ZkcS1GOTYuUSIrRidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjIyMjIyMmVtRicvRlBGW3ItRmdvNiUtRiM2MEZjby1GWDYlLUZnbzYlLUYjNitGWkZfcC1GLDYmUSJ0RidGL0YyRjVGaHBGL0ZbcUZecUZgcUY8RmNxRmVxRmduRl1vRmdxRldGYG9GY28tRlg2JS1GZ282JS1GIzYrRltwRl9wRmdyRmhwRi9GW3FGXnFGYHFGPEZjcUZlcUZnbkZdby1GLDYjUSFGJ0ZocEYvRltxRl5xRmBxRjxGY3FGZXEtRjk2LlEqJnVtaW51czA7RidGL0Y8Rj5GQEZCRkRGRkZIRkpGanFGXHItRmdvNiUtRiM2KS1JJm1mcmFjR0YkNigtRmpuNiVRIjFGJ0YvRjxGZ24vJS5saW5ldGhpY2tuZXNzR0ZfdC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZkdC8lKWJldmVsbGVkR0YxRmhwRi9GW3FGXnFGYHFGPEZjcUZlcUZgby1GWDYlRlotRiM2Ji1Gam42JVEiNEYnRi9GPEYvRjJGNUZdb0ZncS1GLDYmUSZEZWx0YUYnRi9GXnBGPEZgb0ZXRmdxLUZYNiUtRiw2JlEocGhpZG90MUYnRi9GMkY1RmduRl1vRmBvRldGY3NGaW5GYG8tRiw2JlEkYWJzRidGL0ZecEY8LUZYNiUtRmdvNiUtRiM2KS1GLDYmUSN1MEYnRi9GMkY1RmhwRi9GW3FGXnFGYHFGPEZjcUZlcUZnbkZdb0Zgb0ZXRjhGZ3FGaW5GYG9GY28tRmdvNiUtRiM2Ki1GLDYmUSRwaGlGJ0YvRl5wRjxGX3BGZ3JGaHBGL0ZbcUZgcUY8RmNxRmVxRmBvRldGYG9GY28tRmdvNiUtRiM2KkZbcEZfcEZnckZocEYvRltxRmBxRjxGY3FGZXEtRjk2LlEiOkYnRi9GPEY+RkBGQkZERkZGSEZKRlRGVkY4RjhGOC1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZOLyUmZGVwdGhHRmd3LyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUZjdzYmRmV3Rmh3Rmp3L0ZdeFElYXV0b0YnRmBzRmhwRi9GW3FGXnFGYHFGPA==">QyQ+SSNMQUc2IiwyKiZJIkFHRiUiIiMtSSVkaWZmRyUqcHJvdGVjdGVkRzYkSSZ0aGV0YUdGJUkiekdGJSIiIkYwKiQtRis2JEYoSSJ0R0YlRilGMComRihGKS1GKzYkRi5GNEYpRjAqJEYoIiIlIyEiIkYpKiZJJkRlbHRhR0YlRjBGKEYpRjAqJkkocGhpZG90MUdGJUYpRihGKUYwKiYtSSRhYnNHRiw2I0kjdTBHRiVGKUYoRikhIiMqKC1GKzYkSSRwaGlHRiVGNEYwRihGKUY2RjBGKUY7</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L678" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">sub1 := diff(a(z),z)=ap,diff(s(z),z)=sp,diff(c(z),z)=cp,diff(xi(z),z)=xip,diff(d(z),z)=dp,diff(b(z),z)=bp:</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">sub2 := xi(z)=xi,a(z)=a,c(z)=c,s(z)=s,d(z)=d, b(z)=b:</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">LA2 := subs({sub1,sub2},LA):</Text-field>
</Input>
</Group>
<Group labelreference="L664" drawlabel="true">
<Input>
<Text-field style="Maple Input" executable="false" layout="Normal"><Font executable="false">Leff = integral of Lag, we need to assume that a>0 and xi real to be able to evaluate integrals</Font></Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">assume(s>0): assume(xi,real): assume(alpha, real): assume(beta>0): asume(s,real): assume(d,real): assume(c,real); assume(b, real):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">Leff := int(LA2,t=-infinity..infinity):</Text-field>
</Input>
</Group>
<Group labelreference="L677" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">uAs := subs({sub1,sub2},A*exp(I*theta)): </Text-field>
</Input>
</Group>
<Group labelreference="L710" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="uAsC := subs({sub1, sub2}, A*exp(-I*theta)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JlEldUFzQ0YnLyUlYm9sZEdRJmZhbHNlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LlEifkYnRi8vRjZRJ25vcm1hbEYnLyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTi1GOTYuUSomY29sb25lcTtGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4yNzc3Nzc4ZW1GJy9GUEZVRjgtRiw2JlElc3Vic0YnRi9GMkY1LUkobWZlbmNlZEdGJDYlLUYjNi0tRmVuNictRiM2Ki1GLDYmUSVzdWIxRidGL0YyRjUtRjk2LlEiLEYnRi9GPEY+L0ZBRjRGQkZERkZGSEZKRkwvRlBRLDAuMzMzMzMzM2VtRictRiw2JlElc3ViMkYnRi9GMkY1LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRidGLy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStleGVjdXRhYmxlR0YxRjwvRjZRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRmJwLyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJ0Zgby1GLDYmUSJBRidGL0YyRjUtRjk2LlEiKkYnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjE2NjY2NjdlbUYnL0ZQRmJxLUYsNiZRJGV4cEYnRi8vRjNGMUY8LUZlbjYlLUYjNistRjk2LlEqJnVtaW51czA7RidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjIyMjIyMmVtRicvRlBGYHItRiw2JlEiSUYnRi9GMkY1Rl5xLUYsNiZRJnRoZXRhRidGL0ZncUY8RmlvRi9GXHBGX3BGPEZhcEZjcEZpb0YvRlxwRl9wRjxGYXBGY3AtRjk2LlEiOkYnRi9GPEY+RkBGQkZERkZGSEZKRlRGVkZpb0YvRlxwRl9wRjw=">QyQ+SSV1QXNDRzYiLUklc3Vic0clKnByb3RlY3RlZEc2JDwkSSVzdWIxR0YlSSVzdWIyR0YlKiZJIkFHRiUiIiItSSRleHBHNiRGKEkoX3N5c2xpYkdGJTYjKiZeIyEiIkYvSSZ0aGV0YUdGJUYvRi9GNw==</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L711" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="AA := subs({sub1, sub2}, A):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZBLUkjbW9HRiQ2LlEifkYnLyUlYm9sZEdRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGRS1JI21pR0YkNiZRI0FBRidGLy8lJ2l0YWxpY0dRJXRydWVGJy9GM1EnaXRhbGljRidGKy1GLDYuUSomY29sb25lcTtGJ0YvRjJGNUY3RjlGO0Y9Rj9GQS9GRFEsMC4yNzc3Nzc4ZW1GJy9GR0ZVRitGKy1GSTYmUSVzdWJzRidGL0ZMRk8tSShtZmVuY2VkR0YkNiUtRiM2Ki1GZW42Jy1GIzYqLUZJNiZRJXN1YjFGJ0YvRkxGTy1GLDYuUSIsRidGL0YyRjUvRjhGTkY5RjtGPUY/RkFGQy9GR1EsMC4zMzMzMzMzZW1GJy1GSTYmUSVzdWIyRidGL0ZMRk8vJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjFGMi9GM1ElYm9sZEYnLyUrZm9udHdlaWdodEdGYnAvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmBvLUZJNiZRIkFGJ0YvRkxGT0Zpb0YvRlxwRl9wRjJGYXBGY3AtRiw2LlEiOkYnRi9GMkY1RjdGOUY7Rj1GP0ZBRlRGVkYrLUZJNiZRJ3RoZXRhMkYnRi9GTEZPRitGUUYrRlctRmVuNiUtRiM2KkZpbkZgby1GSTYmUSZ0aGV0YUYnRi8vRk1GMUYyRmlvRi9GXHBGX3BGMkZhcEZjcEZecUYrRistRkk2JlElcGhpMkYnRi9GTEZPRitGUUYrRlctRmVuNiUtRiM2KkZpbkZgby1GSTYmUSRwaGlGJ0YvRltyRjJGaW9GL0ZccEZfcEYyRmFwRmNwRl5xRmlvRi9GXHBGX3BGMg==">Qyg+SSNBQUc2Ii1JJXN1YnNHJSpwcm90ZWN0ZWRHNiQ8JEklc3ViMUdGJUklc3ViMkdGJUkiQUdGJSEiIj5JJ3RoZXRhMkdGJS1GJzYkRipJJnRoZXRhR0YlRi4+SSVwaGkyR0YlLUYnNiRGKkkkcGhpR0YlRi4=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L712" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="phidot := subs({sub1, sub2}, diff(phi, t)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JlEncGhpZG90RicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSJ+RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY5Ni5RKiZjb2xvbmVxO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOC1GLDYmUSVzdWJzRidGL0YyRjUtSShtZmVuY2VkR0YkNiUtRiM2Ky1GZW42Jy1GIzYqLUYsNiZRJXN1YjFGJ0YvRjJGNS1GOTYuUSIsRidGL0Y8Rj4vRkFGNEZCRkRGRkZIRkpGTC9GUFEsMC4zMzMzMzMzZW1GJy1GLDYmUSVzdWIyRidGL0YyRjUvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjFGPC9GNlElYm9sZEYnLyUrZm9udHdlaWdodEdGYnAvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmBvLUYsNiZRJWRpZmZGJ0YvRjJGNS1GZW42JS1GIzYqLUYsNiZRJHBoaUYnRi8vRjNGMUY8RmBvLUYsNiZRInRGJ0YvRjJGNUZpb0YvRlxwRl9wRjxGYXBGY3BGaW9GL0ZccEZfcEY8RmFwRmNwLUY5Ni5RIjpGJ0YvRjxGPkZARkJGREZGRkhGSkZURlZGOC1GLDYmUShwaGlkb3QyRidGL0YyRjVGOEZRRjhGVy1GZW42JS1GIzYrRmluRmBvRltxLUZlbjYlLUYjNixGYnFGYG9GZnEtRjk2LlEiJEYnRi9GPEY+RkBGQkZERkZGSEZKRkxGTy1JI21uR0YkNiVRIjJGJ0YvRjxGaW9GL0ZccEZfcEY8RmFwRmNwRmlvRi9GXHBGX3BGPEZhcEZjcEZpcUZpb0YvRlxwRl9wRjw=">QyY+SSdwaGlkb3RHNiItSSVzdWJzRyUqcHJvdGVjdGVkRzYkPCRJJXN1YjFHRiVJJXN1YjJHRiUtSSVkaWZmR0YoNiRJJHBoaUdGJUkidEdGJSEiIj5JKHBoaWRvdDJHRiUtRic2JEYqLUYuNiRGMC1JIiRHRig2JEYxIiIjRjI=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L713" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="ut := subs({sub1, sub2}, diff(A*exp(I*theta), t)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JlEjdXRGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi5RIn5GJ0YvL0Y2USdub3JtYWxGJy8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRk4tRjk2LlEqJmNvbG9uZXE7RidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGVUY4LUYsNiZRJXN1YnNGJ0YvRjJGNS1JKG1mZW5jZWRHRiQ2JS1GIzYrLUZlbjYnLUYjNiotRiw2JlElc3ViMUYnRi9GMkY1LUY5Ni5RIixGJ0YvRjxGPi9GQUY0RkJGREZGRkhGSkZML0ZQUSwwLjMzMzMzMzNlbUYnLUYsNiZRJXN1YjJGJ0YvRjJGNS8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbkYnRi8vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrZXhlY3V0YWJsZUdGMUY8L0Y2USVib2xkRicvJStmb250d2VpZ2h0R0ZicC8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRidGYG8tRiw2JlElZGlmZkYnRi9GMkY1LUZlbjYlLUYjNi4tRiw2JlEiQUYnRi9GMkY1LUY5Ni5RIipGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4xNjY2NjY3ZW1GJy9GUEZpcS1GLDYmUSRleHBGJ0YvL0YzRjFGPC1GZW42JS1GIzYqLUYsNiZRIklGJ0YvRjJGNUZlcS1GLDYmUSZ0aGV0YUYnRi9GXnJGPEZpb0YvRlxwRl9wRjxGYXBGY3BGYG9GOC1GLDYmUSJ0RidGL0YyRjVGaW9GL0ZccEZfcEY8RmFwRmNwRmlvRi9GXHBGX3BGPEZhcEZjcC1GOTYuUSI6RidGL0Y8Rj5GQEZCRkRGRkZIRkpGVEZWRjgtRiw2JlEkdXRDRidGL0YyRjVGOEZRRjhGVy1GZW42JS1GIzYrRmluRmBvRltxLUZlbjYlLUYjNi5GYnFGZXFGW3ItRmVuNiUtRiM2Ky1GOTYuUSomdW1pbnVzMDtGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZidEZjckZlcUZmckZpb0YvRlxwRl9wRjxGYXBGY3BGYG9GOEZpckZpb0YvRlxwRl9wRjxGYXBGY3BGaW9GL0ZccEZfcEY8RmFwRmNwRlxzRmlvRi9GXHBGX3BGPA==">QyY+SSN1dEc2Ii1JJXN1YnNHJSpwcm90ZWN0ZWRHNiQ8JEklc3ViMUdGJUklc3ViMkdGJS1JJWRpZmZHRig2JComSSJBR0YlIiIiLUkkZXhwRzYkRihJKF9zeXNsaWJHRiU2IyomXiNGMkYySSZ0aGV0YUdGJUYyRjJJInRHRiUhIiI+SSR1dENHRiUtRic2JEYqLUYuNiQqJkYxRjItRjQ2IyomXiNGPEYyRjpGMkYyRjtGPA==</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L714" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="duda := diff(uAs, a):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbW9HRiQ2LlEifkYnLyUlYm9sZEdRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGRS1JI21pR0YkNiZRJWR1ZGFGJ0YvLyUnaXRhbGljR1EldHJ1ZUYnL0YzUSdpdGFsaWNGJ0YrLUYsNi5RKiZjb2xvbmVxO0YnRi9GMkY1RjdGOUY7Rj1GP0ZBL0ZEUSwwLjI3Nzc3NzhlbUYnL0ZHRlVGKy1GSTYmUSVkaWZmRidGL0ZMRk8tSShtZmVuY2VkR0YkNiUtRiM2Ki1GSTYmUSR1QXNGJ0YvRkxGTy1GLDYuUSIsRidGL0YyRjUvRjhGTkY5RjtGPUY/RkFGQy9GR1EsMC4zMzMzMzMzZW1GJy1GSTYmUSJhRidGL0ZMRk8vJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjFGMi9GM1ElYm9sZEYnLyUrZm9udHdlaWdodEdGXnAtRiw2LlEiOkYnRi9GMkY1RjdGOUY7Rj1GP0ZBRlRGVkYrLUZJNiZRJmR1ZGFjRidGL0ZMRk9GK0ZRRitGVy1GZW42JS1GIzYrLUZJNiZRJXVBc0NGJ0YvRkxGT0Zcb0YrRmJvRmVvRi9GaG9GW3BGMkZdcEZfcEZhcEZlb0YvRmhvRltwRjI=">QyY+SSVkdWRhRzYiLUklZGlmZkclKnByb3RlY3RlZEc2JEkkdUFzR0YlSSJhR0YlISIiPkkmZHVkYWNHRiUtRic2JEkldUFzQ0dGJUYrRiw=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L647" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">dudb := diff(uAs,b): dudbc := diff(uAsC,b):</Text-field>
</Input>
</Group>
<Group labelreference="L709" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="dudd := diff(uAs, d):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbW9HRiQ2LlEifkYnLyUlYm9sZEdRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGRS1JI21pR0YkNiZRJWR1ZGRGJ0YvLyUnaXRhbGljR1EldHJ1ZUYnL0YzUSdpdGFsaWNGJ0YrLUYsNi5RKiZjb2xvbmVxO0YnRi9GMkY1RjdGOUY7Rj1GP0ZBL0ZEUSwwLjI3Nzc3NzhlbUYnL0ZHRlVGKy1GSTYmUSVkaWZmRidGL0ZMRk8tSShtZmVuY2VkR0YkNiUtRiM2Ki1GSTYmUSR1QXNGJ0YvRkxGTy1GLDYuUSIsRidGL0YyRjUvRjhGTkY5RjtGPUY/RkFGQy9GR1EsMC4zMzMzMzMzZW1GJy1GSTYmUSJkRidGL0ZMRk8vJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjFGMi9GM1ElYm9sZEYnLyUrZm9udHdlaWdodEdGXnAtRiw2LlEiOkYnRi9GMkY1RjdGOUY7Rj1GP0ZBRlRGVkYrLUZJNiZRJmR1ZGRjRidGL0ZMRk9GK0ZRRitGVy1GZW42JS1GIzYqLUZJNiZRJXVBc0NGJ0YvRkxGT0Zcb0Zib0Zlb0YvRmhvRltwRjJGXXBGX3BGYXBGZW9GL0Zob0ZbcEYy">QyY+SSVkdWRkRzYiLUklZGlmZkclKnByb3RlY3RlZEc2JEkkdUFzR0YlSSJkR0YlISIiPkkmZHVkZGNHRiUtRic2JEkldUFzQ0dGJUYrRiw=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L657" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">dudc := diff(uAs,c): dudcc := diff(uAsC,c):</Text-field>
</Input>
</Group>
<Group labelreference="L648" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">duds := diff(uAs, s): dudsc := diff(uAsC, s):</Text-field>
</Input>
</Group>
<Group labelreference="L669" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">dudxi := diff(uAs,xi): dudxic := diff(uAsC,xi): </Text-field>
</Input>
</Group>
<Group labelreference="L687" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">pertRa := evalc(int(-I*(1+phidot2)*AA^2/a + I*(1+phidot2)*AA^2/a,t=-infinity..infinity)):</Text-field>
</Input>
</Group>
<Group labelreference="L688" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="FIa := (phidot^2-phidot2-3*AA^2)*AA*(2*Ur*cos(theta2)+2*Ui*sin(theta2))/a-AA^2*(2*Ur^2*cos(2*theta2)-2*Ui^2*cos(2*theta2)+4*Ui*Ur*sin(2*theta2))/a:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JlEkRklhRicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSJ+RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY5Ni5RKiZjb2xvbmVxO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOC1JJm1mcmFjR0YkNigtRiM2Ky1JKG1mZW5jZWRHRiQ2JS1GIzYvLUklbXN1cEdGJDYlLUYsNiZRJ3BoaWRvdEYnRi9GMkY1LUYjNiktSSNtbkdGJDYlUSIyRidGL0Y8LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRidGL0YyLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RidGNS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjk2LlEoJm1pbnVzO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjIyMjIyMjJlbUYnL0ZQRmdwLUYsNiZRKHBoaWRvdDJGJ0YvRjJGNUZjcC1GZG82JVEiM0YnRi9GPC1GOTYuUScmc2RvdDtGJ0YvRjxGPkZARkJGREZGRkhGSkZMRk8tRlxvNiUtRiw2JlEjQUFGJ0YvRjJGNUZhb0ZgcEZnb0YvRmpvLyUrZXhlY3V0YWJsZUdGMUZdcEY8L0Y2USVib2xkRicvJStmb250d2VpZ2h0R0ZqcUZfcUZkcUZnb0YvRmpvRmdxRl1wRjwtRiM2KS1GLDYmUSJhRidGL0YyRjVGZ29GL0YyRmpvRl1wRjUvJS5saW5ldGhpY2tuZXNzR1EiMUYnLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmdyLyUpYmV2ZWxsZWRHRjFGX3EtRmduNiUtRiM2NUZjb0ZfcS1GLDYmUSNVckYnRi9GMkY1Rl9xLUYsNiZRJGNvc0YnRi8vRjNGMUY8LUZnbjYlLUYjNiktRiw2JlEndGhldGEyRidGL0YyRjVGZ29GL0Zqb0ZncUZdcEY8RmlxRltyLUY5Ni5RIitGJ0YvRjxGPkZARkJGREZGRkhGSkZmcEZocEZjb0ZfcS1GLDYmUSNVaUYnRi9GMkY1Rl9xLUYsNiZRJHNpbkYnRi9GZnNGPEZnc0Znb0YvRmpvRmdxRl1wRjxGaXFGW3JGOC1GOTYuUSomdW1pbnVzMDtGJ0YvRjxGPkZARkJGREZGRkhGSkZmcEZocEY4LUZYNihGYnFGXXJGYnJGZXJGaHJGanJGX3EtRmduNiUtRiM2QEZjb0ZfcS1GXG82JUZgc0Zhb0ZgcEZfcUZjcy1GZ242JS1GIzYrRmNvRl9xRlt0RmdvRi9Gam9GZ3FGXXBGPEZpcUZbckY4Rmd0RjhGY29GX3EtRlxvNiVGYXRGYW9GYHBGX3FGY3NGYnVGXnQtRmRvNiVRIjRGJ0YvRjxGX3FGYXRGX3FGYHNGX3FGZHRGYnVGZ29GL0Zqb0ZncUZdcEY8RmlxRltyLUY5Ni5RIjpGJ0YvRjxGPkZARkJGREZGRkhGSkZURlZGZ29GL0Zqb0ZncUZdcEY8">QyQ+SSRGSWFHNiIsJioqLCgqJEkncGhpZG90R0YlIiIjIiIiSShwaGlkb3QyR0YlISIiKiRJI0FBR0YlRishIiRGLEYwRixJImFHRiVGLiwmKiZJI1VyR0YlRiwtSSRjb3NHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2I0kndGhldGEyR0YlRixGKyomSSNVaUdGJUYsLUkkc2luR0Y4RjtGLEYrRixGLCooRjBGK0YyRi4sKComRjVGKy1GNzYjLCRGPEYrRixGKyomRj5GK0ZERiwhIiMqKEY+RixGNUYsLUZARkVGLCIiJUYsRi5GLg==</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L686" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="pertRs := evalc(int(-I*(1+phidot2)*AA^2*(t-xi)/s^2+I*(1+phidot2)*AA^2*(t-xi)/s^2, t = -infinity .. infinity)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY0LUkjbWlHRiQ2JlEncGVydFJzRicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSJ+RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY5Ni5RKiZjb2xvbmVxO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOC1GLDYmUSZldmFsY0YnRi8vRjNGMUY8LUkobWZlbmNlZEdGJDYlLUYjNiotRiw2JlEkaW50RidGL0ZaRjwtRmZuNiUtRiM2OS1GOTYuUSomdW1pbnVzMDtGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZlby1JJm1mcmFjR0YkNigtRiM2Ly1GLDYmUSJJRidGL0ZaRjwtRjk2LlEnJnNkb3Q7RidGL0Y8Rj5GQEZCRkRGRkZIRkpGTEZPLUZmbjYlLUYjNistSSNtbkdGJDYlUSIxRidGL0Y8LUY5Ni5RIitGJ0YvRjxGPkZARkJGREZGRkhGSkZkb0Zmby1GLDYmUShwaGlkb3QyRidGL0ZaRjwvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjEvJTBmb250X3N0eWxlX25hbWVHUSkyRH5JbnB1dEYnRjwvRjZRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRlxyRl9wLUklbXN1cEdGJDYlLUYsNiZRI0FBRidGL0ZaRjwtRiM2KS1GZ3A2JVEiMkYnRi9GPEZgcUYvRjJGY3FGaHFGNS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGX3AtRmZuNiUtRiM2Ky1GLDYmUSJ0RidGL0ZaRjwtRjk2LlEoJm1pbnVzO0YnRi9GPEY+RkBGQkZERkZGSEZKRmRvRmZvLUYsNiZRI3hpRidGL0ZaRjxGYHFGL0ZjcUZmcUZocUY8RltyRl1yRmBxRi9GY3FGZnFGaHFGPC1GIzYpLUZgcjYlLUYsNiZRInNGJ0YvRjJGNUZlckZqckZgcUYvRjJGY3FGaHFGNS8lLmxpbmV0aGlja25lc3NHRmlwLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmV0LyUpYmV2ZWxsZWRHRjFGOEZqcEY4RlxwRl9wRmJwRl9wLUYjNigtRmhvNigtRiM2Ki1GYHI2JUZici1GIzYoRmdyRmBxRi9GY3FGaHFGPEZqckZfcC1GZm42JS1GIzYqRmFzRmRzRmdzRmBxRi9GY3FGaHFGPEZbckZdckZgcUYvRmNxRmhxRjxGanNGYXRGY3RGZnRGaHRGYHFGL0ZjcUZocUY8LUY5Ni5RIixGJ0YvRjxGPi9GQUY0RkJGREZGRkhGSkZML0ZQUSwwLjMzMzMzMzNlbUYnRmFzLUY5Ni5RIj1GJ0YvRjxGPkZARkJGREZGRkhGSkZURlZGYW8tRiw2JlEpaW5maW5pdHlGJ0YvRlpGPC1GOTYuUSMuLkYnRi9GPEY+RkBGQkZERkZGSEZKRmRvRk9GYXZGYHFGL0ZjcUZmcUZocUY8RltyRl1yRmBxRi9GY3FGZnFGaHFGPEZbckZdci1GOTYuUSI6RidGL0Y8Rj5GQEZCRkRGRkZIRkpGVEZWLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRk4vJSZkZXB0aEdGX3cvJSpsaW5lYnJlYWtHUShuZXdsaW5lRictRlt3NiZGXXdGYHdGYncvRmV3USVhdXRvRidGanZGZ3ctRiw2I1EhRidGYHFGL0ZjcUZmcUZocUY8">QyQ+SSdwZXJ0UnNHNiItSSZldmFsY0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYjLUkkaW50R0YoNiQtSSIrR0YpNiQqLF4jISIiIiIiLCZGNUY1SShwaGlkb3QyR0YlRjVGNUkjQUFHRiUiIiMsJkkidEdGJUY1SSN4aUdGJUY0RjVJInNHRiUhIiMqLF4jRjVGNUY2RjVGOEY5RjpGNUY9Rj4vRjs7LCRJKWluZmluaXR5R0YpRjRGREY0</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L698" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="FIs := (phidot^2-phidot2-3*AA^2)*AA*(t-xi)^2*(2*Ur*cos(theta2)+2*Ui*sin(theta2))/s^3-AA^2*(t-xi)^2*(2*Ur^2*cos(2*theta2)-2*Ui^2*cos(2*theta2)+4*Ui*Ur*sin(2*theta2))/s^3:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JlEkRklzRicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSJ+RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY5Ni5RKiZjb2xvbmVxO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOC1JJm1mcmFjR0YkNigtRiM2LC1JKG1mZW5jZWRHRiQ2JS1GIzYuLUklbXN1cEdGJDYlLUYsNiZRJ3BoaWRvdEYnRi9GMkY1LUYjNigtSSNtbkdGJDYlUSIyRidGL0Y8LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRidGLy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJTBmb250X3N0eWxlX25hbWVHUSkyRH5JbnB1dEYnRjwvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY5Ni5RKCZtaW51cztGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1GLDYmUShwaGlkb3QyRidGL0YyRjVGY3AtRmRvNiVRIjNGJ0YvRjwtRjk2LlEnJnNkb3Q7RidGL0Y8Rj5GQEZCRkRGRkZIRkpGTEZPLUZcbzYlLUYsNiZRI0FBRidGL0YyRjVGYW9GYHBGZ29GL0Zqb0ZdcEY8L0Y2USVib2xkRicvJStmb250d2VpZ2h0R0ZocUZfcUZkcUZfcS1GXG82JS1GZ242JS1GIzYqLUYsNiZRInRGJ0YvRjJGNUZjcC1GLDYmUSN4aUYnRi8vRjNGMUY8RmdvRi9Gam9GXXBGPEZncUZpcS1GIzYpRmNvRmdvRi9GMkZqb0ZdcEY1RmBwRmdvRi9Gam9GXXBGPC1GIzYoLUZcbzYlLUYsNiZRInNGJ0YvRjJGNS1GIzYpRlxxRmdvRi9GMkZqb0ZdcEY1RmBwRmdvRi9Gam9GXXBGPC8lLmxpbmV0aGlja25lc3NHUSIxRicvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaHMvJSliZXZlbGxlZEdGMUZfcS1GZ242JS1GIzY0RmNvRl9xLUYsNiZRI1VyRidGL0YyRjVGX3EtRiw2JlEkY29zRidGL0ZnckY8LUZnbjYlLUYjNigtRiw2JlEndGhldGEyRidGL0YyRjVGZ29GL0Zqb0ZdcEY8RmdxRmlxLUY5Ni5RIitGJ0YvRjxGPkZARkJGREZGRkhGSkZmcEZocEZjb0ZfcS1GLDYmUSNVaUYnRi9GMkY1Rl9xLUYsNiZRJHNpbkYnRi9GZ3JGPEZndEZnb0YvRmpvRl1wRjxGZ3FGaXFGOC1GOTYuUSomdW1pbnVzMDtGJ0YvRjxGPkZARkJGREZGRkhGSkZmcEZocEY4LUZYNigtRiM2K0ZicUZfcS1GXG82JS1GZ242JS1GIzYrRmFyRmNwRmRyRmdvRi9Gam8vJStleGVjdXRhYmxlR0YxRl1wRjxGZ3FGaXFGaHJGYHBGZ29GL0Zqb0ZkdkZdcEY8RmpyRmNzRmZzRmlzRlt0Rl9xLUZnbjYlLUYjNj9GY29GX3EtRlxvNiVGYXRGYW9GYHBGX3FGZHQtRmduNiUtRiM2KkZjb0ZfcUZbdUZnb0YvRmpvRl1wRjxGZ3FGaXFGOEZndUY4RmNvRl9xLUZcbzYlRmF1RmFvRmBwRl9xRmR0Rlx3Rl51LUZkbzYlUSI0RidGL0Y8Rl9xRmF1Rl9xRmF0Rl9xRmR1Rlx3RmdvRi9Gam9GXXBGPEZncUZpcS1GOTYuUSI6RidGL0Y8Rj5GQEZCRkRGRkZIRkpGVEZWRmdvRi9Gam9GZHZGXXBGPA==">QyQ+SSRGSXNHNiIsJiosLCgqJEkncGhpZG90R0YlIiIjIiIiSShwaGlkb3QyR0YlISIiKiRJI0FBR0YlRishIiRGLEYwRiwsJkkidEdGJUYsSSN4aUdGJUYuRitJInNHRiVGMSwmKiZJI1VyR0YlRiwtSSRjb3NHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2I0kndGhldGEyR0YlRixGKyomSSNVaUdGJUYsLUkkc2luR0Y7Rj5GLEYrRixGLCoqRjBGK0YyRitGNUYxLCgqJkY4RistRjo2IywkRj9GK0YsRisqJkZBRitGR0YsISIjKihGQUYsRjhGLC1GQ0ZIRiwiIiVGLEYuRi4=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L671" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">pertRc := int(((-I-I*phidot2)*uAs*dudcc + (I+I*phidot2)*uAsC*dudc, t=-infinity..infinity)): </Text-field>
</Input>
</Group>
<Group labelreference="L715" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="FIc := (phidot^2-phidot2-AA^2)*AA*(t-xi)*(2*Ur*cos(theta2)-2*Ui*sin(theta2))-AA^2*(t-xi)*(2*Ui^2*sin(2*theta2)-2*Ur^2*sin(2*theta2)+4*Ui*Ur*cos(2*theta2)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY7LUkjbWlHRiQ2JlEkRkljRicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSJ+RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY5Ni5RKiZjb2xvbmVxO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOC1JKG1mZW5jZWRHRiQ2JS1GIzYwLUYsNiZRJ3BoaWRvdEYnRi9GMkY1LUY5Ni5RIl5GJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4xMTExMTExZW1GJy9GUEZdby1JI21uR0YkNiVRIjJGJ0YvRjwtRjk2LlEqJnVtaW51czA7RidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjIyMjIyMmVtRicvRlBGZ28tRiw2JlEocGhpZG90MkYnRi9GMkY1RmNvLUYsNiZRI0FBRidGL0YyRjVGaW5GX28vJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjFGPC9GNlElYm9sZEYnLyUrZm9udHdlaWdodEdGaHAtRjk2LlEiKkYnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjE2NjY2NjdlbUYnL0ZQRl9xRlxwRltxLUZYNiUtRiM2Ki1GLDYmUSJ0RidGL0YyRjVGY28tRiw2JlEjeGlGJ0YvL0YzRjFGPEZfcEYvRmJwRmVwRjxGZ3BGaXBGW3EtRlg2JS1GIzY0Rl9vRltxLUYsNiZRI1VyRidGL0YyRjVGW3EtRiw2JlEkY29zRidGL0ZbckY8LUZYNiUtRiM2KC1GLDYmUSd0aGV0YTJGJ0YvRjJGNUZfcEYvRmJwRmVwRjxGZ3BGaXBGY29GX29GW3EtRiw2JlEjVWlGJ0YvRjJGNUZbcS1GLDYmUSRzaW5GJ0YvRltyRjxGZnJGX3BGL0ZicEZlcEY8RmdwRmlwRmNvRlxwRmluRl9vRltxRmFxRltxLUZYNiUtRiM2QUZfb0ZbcUZdc0ZpbkZfb0ZbcUZgcy1GWDYlLUYjNipGX29GW3FGanJGX3BGL0ZicEZlcEY8RmdwRmlwRmNvRl9vRltxRmByRmluRl9vRltxRmBzRmdzLUY5Ni5RIitGJ0YvRjxGPkZARkJGREZGRkhGSkZmb0Zoby1GYG82JVEiNEYnRi9GPEZbcUZdc0ZbcUZgckZbcUZjckZnc0ZfcEYvRmJwRmVwRjxGZ3BGaXAtRjk2LlEiOkYnRi9GPEY+RkBGQkZERkZGSEZKRlRGVkZfcEYvRmJwRmVwRjw=">QyQ+SSRGSWNHNiIsJioqLCgqJEkncGhpZG90R0YlIiIjIiIiSShwaGlkb3QyR0YlISIiKiRJI0FBR0YlRitGLkYsRjBGLCwmSSJ0R0YlRixJI3hpR0YlRi5GLCwmKiZJI1VyR0YlRiwtSSRjb3NHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2I0kndGhldGEyR0YlRixGKyomSSNVaUdGJUYsLUkkc2luR0Y5RjxGLCEiI0YsRiwqKEYwRitGMUYsLCgqJkY/RistRkE2IywkRj1GK0YsRisqJkY2RitGRkYsRkIqKEY/RixGNkYsLUY4RkdGLCIiJUYsRi5GLg==</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L660" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">pertRd := int(simplify((-I-I*phidot2)*uAs*duddc + (I+I*phidot2)*uAsC*dudd), t=-infinity..infinity):</Text-field>
</Input>
</Group>
<Group labelreference="L716" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="FId := (phidot^2-phidot2-AA^2)*AA*(t-xi)^2*(2*Ur*cos(theta2)-2*Ui*sin(theta2))-AA^2*(t-xi)^2*(2*Ui^2*sin(2*theta2)-2*Ur^2*sin(2*theta2)+4*Ui*Ur*cos(2*theta2)):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY/LUkjbWlHRiQ2JlEkRklkRicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSJ+RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY5Ni5RKiZjb2xvbmVxO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOC1JKG1mZW5jZWRHRiQ2JS1GIzYwLUYsNiZRJ3BoaWRvdEYnRi9GMkY1LUY5Ni5RIl5GJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4xMTExMTExZW1GJy9GUEZdby1JI21uR0YkNiVRIjJGJ0YvRjwtRjk2LlEqJnVtaW51czA7RidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjIyMjIyMmVtRicvRlBGZ28tRiw2JlEocGhpZG90MkYnRi9GMkY1RmNvLUYsNiZRI0FBRidGL0YyRjVGaW5GX28vJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjFGPC9GNlElYm9sZEYnLyUrZm9udHdlaWdodEdGaHAtRjk2LlEiKkYnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjE2NjY2NjdlbUYnL0ZQRl9xRlxwRltxLUZYNiUtRiM2Ki1GLDYmUSJ0RidGL0YyRjVGY28tRiw2JlEjeGlGJ0YvL0YzRjFGPEZfcEYvRmJwRmVwRjxGZ3BGaXBGaW5GX29GW3EtRlg2JS1GIzY0Rl9vRltxLUYsNiZRI1VyRidGL0YyRjVGW3EtRiw2JlEkY29zRidGL0ZbckY8LUZYNiUtRiM2KC1GLDYmUSd0aGV0YTJGJ0YvRjJGNUZfcEYvRmJwRmVwRjxGZ3BGaXBGY29GX29GW3EtRiw2JlEjVWlGJ0YvRjJGNUZbcS1GLDYmUSRzaW5GJ0YvRltyRjxGZnJGX3BGL0ZicEZlcEY8RmdwRmlwRmNvRlxwRmluRl9vRltxRmFxRmluRl9vRltxLUZYNiUtRiM2QUZfb0ZbcUZdc0ZpbkZfb0ZbcUZgcy1GWDYlLUYjNipGX29GW3FGanJGX3BGL0ZicEZlcEY8RmdwRmlwRmNvRl9vRltxRmByRmluRl9vRltxRmBzRmdzLUY5Ni5RIitGJ0YvRjxGPkZARkJGREZGRkhGSkZmb0Zoby1GYG82JVEiNEYnRi9GPEZbcUZdc0ZbcUZgckZbcUZjckZnc0ZfcEYvRmJwRmVwRjxGZ3BGaXAtRjk2LlEiOkYnRi9GPEY+RkBGQkZERkZGSEZKRlRGVkZfcEYvRmJwRmVwRjw=">QyQ+SSRGSWRHNiIsJioqLCgqJEkncGhpZG90R0YlIiIjIiIiSShwaGlkb3QyR0YlISIiKiRJI0FBR0YlRitGLkYsRjBGLCwmSSJ0R0YlRixJI3hpR0YlRi5GKywmKiZJI1VyR0YlRiwtSSRjb3NHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2I0kndGhldGEyR0YlRixGKyomSSNVaUdGJUYsLUkkc2luR0Y5RjxGLCEiI0YsRiwqKEYwRitGMUYrLCgqJkY/RistRkE2IywkRj1GK0YsRisqJkY2RitGRkYsRkIqKEY/RixGNkYsLUY4RkdGLCIiJUYsRi5GLg==</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L656" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">pertRxi := int(((-I-I*phidot2)*uAs*dudxic + (I+I*phidot2)*uAsC*dudxi), t=-infinity..infinity): </Text-field>
</Input>
</Group>
<Group labelreference="L717" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="FIxi := (phidot^2-phidot2-AA^2)*AA*(-c-2*d*(t-xi))*(2*Ur*cos(theta2)-2*Ui*sin(theta2))-AA^2*(-c-2*d*(t-xi))*(2*Ui^2*sin(2*theta2)-2*Ur^2*sin(2*theta2)+4*Ui*Ur*cos(2*theta2))+(phidot^2-phidot2-3*AA^2)*AA*(t-xi)*(2*Ur*cos(theta2)+2*Ui*sin(theta2))/s^2-AA^2*(t-xi)*(2*Ur^2*cos(2*theta2)-2*Ui^2*cos(2*theta2)+4*Ui*Ur*sin(2*theta2))/s^2:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZWLUkjbWlHRiQ2JlElRkl4aUYnLyUlYm9sZEdRJmZhbHNlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LlEifkYnRi8vRjZRJ25vcm1hbEYnLyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTi1GOTYuUSomY29sb25lcTtGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4yNzc3Nzc4ZW1GJy9GUEZVRjgtSShtZmVuY2VkR0YkNiUtRiM2MC1GLDYmUSdwaGlkb3RGJ0YvRjJGNS1GOTYuUSJeRidGL0Y8Rj5GQEZCRkRGRkZIRkovRk1RLDAuMTExMTExMWVtRicvRlBGXW8tSSNtbkdGJDYlUSIyRidGL0Y8LUY5Ni5RKiZ1bWludXMwO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjIyMjIyMjJlbUYnL0ZQRmdvLUYsNiZRKHBoaWRvdDJGJ0YvRjJGNUZjby1GLDYmUSNBQUYnRi9GMkY1RmluRl9vLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRidGLy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStleGVjdXRhYmxlR0YxRjwvRjZRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRmhwLUY5Ni5RIipGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4xNjY2NjY3ZW1GJy9GUEZfcUZccEZbcS1GWDYlLUYjNi9GY28tRiw2JlEiY0YnRi9GMkY1RmNvRl9vRltxLUYsNiZRImRGJ0YvRjJGNUZbcS1GWDYlLUYjNiotRiw2JlEidEYnRi9GMkY1RmNvLUYsNiZRI3hpRidGLy9GM0YxRjxGX3BGL0ZicEZlcEY8RmdwRmlwRl9wRi9GYnBGZXBGPEZncEZpcEZbcS1GWDYlLUYjNjRGX29GW3EtRiw2JlEjVXJGJ0YvRjJGNUZbcS1GLDYmUSRjb3NGJ0YvRmVyRjwtRlg2JS1GIzYoLUYsNiZRJ3RoZXRhMkYnRi9GMkY1Rl9wRi9GYnBGZXBGPEZncEZpcEZjb0Zfb0ZbcS1GLDYmUSNVaUYnRi9GMkY1RltxLUYsNiZRJHNpbkYnRi9GZXJGPEZgc0ZfcEYvRmJwRmVwRjxGZ3BGaXBGY29GXHBGaW5GX29GW3FGYXFGW3EtRlg2JS1GIzZBRl9vRltxRmdzRmluRl9vRltxRmpzLUZYNiUtRiM2KkZfb0ZbcUZkc0ZfcEYvRmJwRmVwRjxGZ3BGaXBGY29GX29GW3FGanJGaW5GX29GW3FGanNGYXQtRjk2LlEiK0YnRi9GPEY+RkBGQkZERkZGSEZKRmZvRmhvLUZgbzYlUSI0RidGL0Y8RltxRmdzRltxRmpyRltxRl1zRmF0Rl9wRi9GYnBGZXBGPEZncEZpcEY4RmV0RjgtRlg2JS1GIzYyRmZuRmluRl9vRmNvRmlvRmNvLUZgbzYlUSIzRidGL0Y8RltxRlxwRmluRl9vRl9wRi9GYnBGZXBGPEZncEZpcEZbcUZccEZbcUZbckZbcS1GWDYlLUYjNjRGX29GW3FGanJGW3FGXXNGYHNGZXRGX29GW3FGZ3NGW3FGanNGYHNGX3BGL0ZicEZlcEY8RmdwRmlwLUY5Ni5RIi9GJ0YvRjxGPkZAL0ZDRjRGREZGRkhGSkZecUZgcS1GLDYmUSJzRidGL0YyRjVGaW5GX29GY29GXHBGaW5GX29GW3FGW3JGW3EtRlg2JS1GIzZBRl9vRltxRmpyRmluRl9vRltxRl1zRmF0RmNvRl9vRltxRmdzRmluRl9vRltxRl1zRmF0RmV0Rmh0RltxRmdzRltxRmpyRltxRmpzRmF0Rl9wRi9GYnBGZXBGPEZncEZpcEZmdUZqdUZpbkZfby1GOTYuUSI6RidGL0Y8Rj5GQEZCRkRGRkZIRkpGVEZWRjhGX3BGL0ZicEZlcEY8">QyQ+SSVGSXhpRzYiLCoqKiwoKiRJJ3BoaWRvdEdGJSIiIyIiIkkocGhpZG90MkdGJSEiIiokSSNBQUdGJUYrRi5GLEYwRiwsJkkiY0dGJUYuKiZJImRHRiVGLCwmSSJ0R0YlRixJI3hpR0YlRi5GLCEiI0YsLCYqJkkjVXJHRiVGLC1JJGNvc0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYjSSd0aGV0YTJHRiVGLEYrKiZJI1VpR0YlRiwtSSRzaW5HRj5GQUYsRjhGLEYsKihGMEYrRjFGLCwoKiZGREYrLUZGNiMsJEZCRitGLEYrKiZGO0YrRkpGLEY4KihGREYsRjtGLC1GPUZLRiwiIiVGLEYuKiwsKEYpRixGLUYuRi8hIiRGLEYwRixGNUYsLCZGOkYrRkNGK0YsSSJzR0YlRjhGLCoqRjBGK0Y1RiwsKComRjtGK0ZPRixGKyomRkRGK0ZPRixGOCooRkRGLEY7RixGSkYsRlBGLEZVRjhGLkYu</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L699" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="pertRb := int((-I-I*phidot2)*uAs*dudbc+(I+I*phidot2)*uAsC*dudb, t = -infinity .. infinity):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYwLUkjbWlHRiQ2JlEncGVydFJiRicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSJ+RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY5Ni5RKiZjb2xvbmVxO0YnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOC1GLDYmUSRpbnRGJ0YvRjJGNS1JKG1mZW5jZWRHRiQ2JS1GIzYyLUYsNiNRIUYnLUZlbjYlLUYjNjctRmVuNiUtRiM2Li1GOTYuUSomdW1pbnVzMDtGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZoby1GLDYmUSJJRidGL0YyRjVGZG9Gam8tRjk2LlEnJnNkb3Q7RidGL0Y8Rj5GQEZCRkRGRkZIRkpGTEZPLUYsNiZRKHBoaWRvdDJGJ0YvRjJGNS8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbkYnRi8vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrZXhlY3V0YWJsZUdGMS8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RidGPC9GNlElYm9sZEYnLyUrZm9udHdlaWdodEdGX3FGXXAtRiw2JlEkdUFzRidGL0YyRjVGXXAtRiw2JlEmZHVkYmNGJ0YvRjJGNUY4RjgtRjk2LlEiK0YnRi9GPEY+RkBGQkZERkZGSEZKRmdvRmlvRjgtRmVuNiUtRiM2LUZqb0ZocUZqb0ZdcEZgcEZjcEYvRmZwRmlwRltxRjxGXnFGYHFGXXAtRiw2JlEldUFzQ0YnRi9GMkY1Rl1wLUYsNiZRJWR1ZGJGJ0YvRjJGNUY4RmNwRi9GZnBGaXBGW3FGPEZecUZgcS1GOTYuUSIsRidGL0Y8Rj4vRkFGNEZCRkRGRkZIRkpGTC9GUFEsMC4zMzMzMzMzZW1GJ0Y4LUYsNiZRInRGJ0YvRjJGNS1GOTYuUSI9RidGL0Y8Rj5GQEZCRkRGRkZIRkpGVEZWRmRvLUYsNiZRKWluZmluaXR5RidGL0YyRjUtRjk2LlEjLi5GJ0YvRjxGPkZARkJGREZGRkhGSkZnb0ZPRmFzRmNwRi9GZnBGaXBGW3FGPEZecUZgcS1GOTYuUSI6RidGL0Y8Rj5GQEZCRkRGRkZIRkpGVEZWRjhGY3BGL0ZmcEZpcEZbcUY8">QyQ+SSdwZXJ0UmJHNiItSSRpbnRHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JCwmKigsJl4jISIiIiIiKiZGL0YxSShwaGlkb3QyR0YlRjFGMUYxSSR1QXNHRiVGMUkmZHVkYmNHRiVGMUYxKigsJl4jRjFGMSomRjhGMUYzRjFGMUYxSSV1QXNDR0YlRjFJJWR1ZGJHRiVGMUYxL0kidEdGJTssJEkpaW5maW5pdHlHRilGMEZARjA=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L649" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">FIb := (phidot^2-phidot2-AA^2)*AA*(2*Ur*cos(theta2)-2*Ui*sin(theta2))-AA^2*(2*Ui^2*sin(2*theta2)-2*Ur^2*sin(2*theta2)+4*Ui*Ur*cos(2*theta2)):</Text-field>
</Input>
</Group>
<Group labelreference="L651" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2I1EhRicvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJy8lJWJvbGRHUSZmYWxzZUYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjQvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYn">JSFH</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L654" drawlabel="true">
<Input>
<Text-field style="Maple Input" executable="false" layout="Normal"><Font executable="false">Put back z-dependences so that we can do Euler-Lag </Font></Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">subi1 := ap=diff(a(z),z),dp=diff(d(z),z),cp=diff(c(z),z),sp=(diff(s(z),z)),bp=(diff(b(z),z)),xip=(diff(xi(z),z)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">subi2 := b=b(z),s = s(z),c=c(z),xi=xi(z),a=a(z),d=d(z):</Text-field>
</Input>
</Group>
<Group labelreference="L701" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">sub11 := ap=diff(a(z),z),sp=diff(s(z),z),cp=diff(c(z),z),xip=diff(xi(z),z),dp=diff(d(z),z),bp=diff(b(z),z):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">sub22 := d=d(z), b=b(z), xi=xi(z), a=a(z), c=c(z), s=s(z): sub33 := AA = A, theta2 = theta:</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2I1EhRicvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJy8lJWJvbGRHUSZmYWxzZUYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjQvJTBmb250X3N0eWxlX25hbWVHUSkyRH5JbnB1dEYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJw==">JSFH</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L700" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="eFIa := subs({subi1, subi2}, FIa):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZZLUkjbWlHRiQ2JlElZUZJYUYnLyUlYm9sZEdRJmZhbHNlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LlEifkYnRi8vRjZRJ25vcm1hbEYnLyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTi1GOTYuUSomY29sb25lcTtGJ0YvRjxGPkZARkJGREZGRkhGSi9GTVEsMC4yNzc3Nzc4ZW1GJy9GUEZVRjgtRiw2JlElc3Vic0YnRi9GMkY1LUkobWZlbmNlZEdGJDYlLUYjNiotRmVuNictRiM2Ki1GLDYmUSZzdWJpMkYnRi9GMkY1LUY5Ni5RIixGJ0YvRjxGPi9GQUY0RkJGREZGRkhGSkZML0ZQUSwwLjMzMzMzMzNlbUYnLUYsNiZRJnN1YmkxRidGL0YyRjUvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJ0YvLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RidGPC9GNlElYm9sZEYnLyUrZm9udHdlaWdodEdGY3AvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmBvLUYsNiZRJEZJYUYnRi9GMkY1RmlvRi9GXHBGX3BGPEZicEZkcC1GOTYuUSI6RidGL0Y8Rj5GQEZCRkRGRkZIRkpGVEZWRjhGOC1GLDYmUSVlRkliRidGL0YyRjVGOEZRRjhGVy1GZW42JS1GIzYqLUZlbjYnLUYjNiotRiw2JlEmc3ViMjJGJ0YvRjJGNUZgby1GLDYmUSZzdWIxMUYnRi9GMkY1RmlvRi9GXHBGX3BGPEZicEZkcEZmcEZpcEZgby1GZW42JS1GIzYoLUYsNiZRJEZJYkYnRi9GMkY1RmlvRi9GXHBGX3BGPEZicEZkcEZpb0YvRlxwRl9wRjxGYnBGZHBGX3FGOC1GLDYmUSVlRkljRidGL0YyRjVGOEZRRjhGVy1GZW42JS1GIzYqRmlxRmBvLUZlbjYlLUYjNigtRiw2JlEkRkljRidGL0YyRjVGaW9GL0ZccEZfcEY8RmJwRmRwRmlvRi9GXHBGX3BGPEZicEZkcEZfcUY4RjgtRiw2JlElZUZJZEYnRi9GMkY1RjhGUUY4RlctRmVuNiUtRiM2KkZpcUZgby1GZW42JS1GIzYoLUYsNiZRJEZJZEYnRi9GMkY1RmlvRi9GXHBGX3BGPEZicEZkcEZpb0YvRlxwRl9wRjxGYnBGZHBGX3FGOC1GLDYmUSVlRklzRidGL0YyRjVGOEZRRjhGVy1GZW42JS1GIzYqRmlxRmBvLUYsNiZRJEZJc0YnRi9GMkY1RmlvRi9GXHBGX3BGPEZicEZkcEZfcUY4LUYsNiZRJmVGSXhpRidGL0YyRjVGOEZRRjhGVy1GZW42JS1GIzYqRmlxRmBvLUZlbjYlLUYjNigtRiw2JlElRkl4aUYnRi9GMkY1RmlvRi9GXHBGX3BGPEZicEZkcEZpb0YvRlxwRl9wRjxGYnBGZHBGX3FGaW9GL0ZccC8lK2V4ZWN1dGFibGVHRjFGX3BGPA==">Qy4+SSVlRklhRzYiLUklc3Vic0clKnByb3RlY3RlZEc2JDwkSSZzdWJpMUdGJUkmc3ViaTJHRiVJJEZJYUdGJSEiIj5JJWVGSWJHRiUtRic2JDwkSSZzdWIxMUdGJUkmc3ViMjJHRiVJJEZJYkdGJUYuPkklZUZJY0dGJS1GJzYkRjNJJEZJY0dGJUYuPkklZUZJZEdGJS1GJzYkRjNJJEZJZEdGJUYuPkklZUZJc0dGJS1GJzYkRjNJJEZJc0dGJUYuPkkmZUZJeGlHRiUtRic2JEYzSSVGSXhpR0YlRi4=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L658" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="Maple Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2I1EhRicvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJy8lJWJvbGRHUSZmYWxzZUYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2V4ZWN1dGFibGVHRjQvJTBmb250X3N0eWxlX25hbWVHUSkyRH5JbnB1dEYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJw==">JSFH</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L674" drawlabel="true">
<Input>
<Text-field style="Normal" layout="Normal">Euler-Lagrange eqs</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">dLsp := subs({subi1, subi2},diff(Leff,sp)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">dLbp := subs({subi1, subi2},diff(Leff,bp)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">dLcp := subs({subi1, subi2},diff(Leff,cp)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">dLdp := subs({subi1, subi2},diff(Leff,dp)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">dLap := subs({subi1, subi2},diff(Leff,ap)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">dLxip:= subs({subi1, subi2},diff(Leff,xip)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eq1 := diff(dLsp,z) - subs({subi1,subi2},diff(Leff,s)) = subs({subi1,subi2},pertRs+Is):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eq2 := diff(dLbp,z) - subs({subi1,subi2},diff(Leff,b)) = subs({subi1,subi2},pertRb+Ib):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eq3 := diff(dLcp,z) - subs({subi1,subi2},diff(Leff,c)) = subs({subi1,subi2},pertRc+Ic):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eq4 := diff(dLdp,z) - subs({subi1,subi2},diff(Leff,d)) = subs({subi1,subi2},pertRd+Id):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eq5 := diff(dLap,z) - subs({subi1,subi2},diff(Leff,a)) = subs({subi1,subi2},pertRa+Ia):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eq6 := diff(dLxip,z) - subs({subi1,subi2},diff(Leff,xi)) = subs({subi1,subi2},pertRxi+Ixi):</Text-field>
</Input>
</Group>
<Group labelreference="L683" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field>
</Input>
</Group>
<Group labelreference="L670" drawlabel="true">
<Input>
<Text-field style="Normal" layout="Normal">Sove Euler-Lag ODEs simultaneously </Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">sol:= simplify(solve({eq1,eq2,eq3,eq4,eq5,eq6},{diff(a(z),z),diff(b(z),z),diff(s(z),z),diff(d(z),z),diff(c(z),z),diff(xi(z),z)})):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eqs := diff(s(z),z)=subs(sol,diff(s(z),z)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eqb := diff(b(z),z)=subs(sol,diff(b(z),z)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eqc := diff(c(z),z)=subs(sol,diff(c(z),z)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eqd := diff(d(z),z)=subs(sol,diff(d(z),z)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eqa := diff(a(z),z)=subs(sol,diff(a(z),z)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">eqxi := diff(xi(z),z)=subs(sol,diff(xi(z),z)):</Text-field>
</Input>
</Group>
<Group labelreference="L668" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">subMatlab := a(z) = x(1), b(z) = x(2), c(z)=x(3), d(z) = x(4), s(z)=x(5), xi(z) = x(6), Delta = k, Ui = imag(uS), Ur=real(uS), alpha = h, beta = sigma_X: </Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">M1 := subs({subMatlab},(eqa)): M2 := subs({subMatlab},collect(eqb,{a(z),s(z)},recursive)): M3 := subs({subMatlab},(eqc)): M4 := subs({subMatlab},collect(eqd,{a(z),s(z)},recursive)): M5 := subs({subMatlab},(eqs)): M6 := subs({subMatlab},(eqxi)): F1 := subs({subMatlab},(eFIa)): F2 := subs({subMatlab},(eFIb)): F3 := subs({subMatlab},(eFIc)): F4 := subs({subMatlab},(eFId)): F5 := subs({subMatlab},(eFIs)): F6 := subs({subMatlab},(eFIxi)):</Text-field>
<Text-field prompt="> " style="Maple Input" layout="Normal">with(CodeGeneration):</Text-field>
</Input>
</Group>
<Group labelreference="L653" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">Matlab(M1): Matlab(M2): Matlab(M3): Matlab(M4):Matlab(M5): Matlab(M6):</Text-field>
</Input>
<Output>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bx%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg = 0.0e0 == (-0.192e3 * x(1) ^ 2 * x(4) * (x(5) ^ 7) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) - 0.256e3 * x(1) ^ 2 * x(4) * (x(5) ^ 5) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) - 0.128e3 * x(1) ^ 2 * x(4) * (x(5) ^ 3) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) - 0.64e2 * x(1) ^ 2 * x(4) * (x(5) ^ 9) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) + 0.160e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sigma_X * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * tau0 * x(6) + 0.448e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 3) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * tau0 * x(6) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * tau0 * x(6) - 0.64e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 3) * sigma_X - 0.64e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) * x(6) * sigma_X + 0.96e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * (x(6) ^ 2) * sigma_X + 0.28e2 * sigma_X * (x(5) ^ 9) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 + 0.144e3 * (sigma_X ^ 3) * (x(5) ^ 7) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 + 0.240e3 * (sigma_X ^ 5) * (x(5) ^ 5) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 + 0.128e3 * (sigma_X ^ 7) * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 - 0.2e1 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 8) - 0.32e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) + 0.3e1 * (x(5) ^ 10) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.4e1 * sqrt(pi) * (x(5) ^ 11) * x(1) ^ 2 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.64e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 2) * (sigma_X ^ 6) + 0.96e2 * (x(5) ^ 4) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) + 0.48e2 * (x(5) ^ 2) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) + 0.24e2 * (x(5) ^ 8) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) + 0.72e2 * (x(5) ^ 6) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) - 0.16e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 6) * (sigma_X ^ 2) - 0.48e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 4) * (sigma_X ^ 4) - 0.32e2 * (x(5) ^ 9) * sqrt(pi) * x(1) ^ 2 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) - 0.96e2 * (x(5) ^ 7) * sqrt(pi) * x(1) ^ 2 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) - 0.128e3 * (x(5) ^ 5) * sqrt(pi) * x(1) ^ 2 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) - 0.64e2 * (x(5) ^ 3) * sqrt(pi) * x(1) ^ 2 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) - 0.8e1 * x(1) ^ 2 * x(4) * (x(5) ^ 11) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.80e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sigma_X * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (tau0 ^ 2) + 0.16e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 4) * sigma_X + 0.16e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 4) * sigma_X - 0.224e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 3) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (tau0 ^ 2) - 0.224e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 3) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (x(6) ^ 2) - 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (tau0 ^ 2) - 0.80e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sigma_X * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (x(6) ^ 2) - 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (x(6) ^ 2)) / x(1) / (x(5) ^ 3) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / 0.4e1;</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bx%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20following%20variable%20name%20replacements%20were%20made%3A%20%5B%22cg%22%5D%20%3D%20%5B%22u0%7E%22%5D" hyperlink="true"><Font style="HyperlinkWarning">Warning, the following variable name replacements were made: ["cg"] = ["u0~"]</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg0 = 0.0e0 == (0.5e1 / 0.8e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 16) + 0.15e2 / 0.2e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 2) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 14) + 0.155e3 / 0.4e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 12) + 0.225e3 / 0.2e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 6) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 10) + 0.1605e4 / 0.8e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 8) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 8) + 0.225e3 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 10) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 6) + 0.155e3 * (sigma_X ^ 12) * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 4) + 0.60e2 * (sigma_X ^ 14) * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 2) + 0.10e2 / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * sqrt(0.2e1) * (sigma_X ^ 16)) * x(1) ^ 2 - (0.6e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.8e1 * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sigma_X * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.8e1 * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sigma_X * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.16e2 * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sigma_X * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 16) / 0.8e1 - (0.96e2 * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 3) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.60e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) + 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * x(6) + 0.192e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) + 0.192e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) + 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) - 0.96e2 * (sigma_X ^ 3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 - 0.4e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) - 0.4e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) - 0.192e3 * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 3) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.8e1 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sigma_X * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 14) / 0.8e1 - (-0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.96e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) + 0.96e2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 3) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 2) + 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.1152e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 + 0.32e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) - 0.1248e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) + 0.16e2 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * tau0 * x(6) - 0.496e3 * (sigma_X ^ 5) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.1152e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.96e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) - 0.992e3 * (sigma_X ^ 5) * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.246e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) - 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 2) - 0.2304e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 - 0.32e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) + 0.496e3 * (sigma_X ^ 5) * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 12) / 0.8e1 - (-0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) - 0.192e3 * (sigma_X ^ 4) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) + 0.2688e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) + 0.192e3 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 4) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) - 0.1248e4 * (sigma_X ^ 6) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.1248e4 * (sigma_X ^ 6) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.2688e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) + 0.132e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 4) + 0.132e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 4) - 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.496e3 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 5) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.528e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 + 0.576e3 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 4) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) - 0.576e3 * (sigma_X ^ 4) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) - 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) - 0.5376e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 + 0.1440e4 * (sigma_X ^ 7) * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.2880e4 * (sigma_X ^ 7) * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.1440e4 * (sigma_X ^ 7) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0 - 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) + 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) - 0.264e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * tau0 * x(6) - 0.2112e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 10) / 0.8e1 - (0.448e3 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 6) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) + 0.3072e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) + 0.3072e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) - 0.448e3 * (sigma_X ^ 6) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) + 0.2112e4 * (sigma_X ^ 8) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) - 0.2112e4 * (sigma_X ^ 8) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.744e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 6) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.744e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 6) + 0.1440e4 * (sigma_X ^ 7) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.2304e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) - 0.6144e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 + 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 - 0.1344e4 * (sigma_X ^ 6) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) + 0.1344e4 * (sigma_X ^ 6) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) + 0.624e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) + 0.2568e4 * (sigma_X ^ 9) * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.5136e4 * (sigma_X ^ 9) * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.2568e4 * (sigma_X ^ 9) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.1968e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.1488e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * tau0 * x(6) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 8) / 0.8e1 - (0.512e3 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) - 0.1968e4 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) - 0.512e3 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) + 0.1968e4 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.1728e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) + 0.1728e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) - 0.192e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.192e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.1632e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 8) + 0.1632e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 8) + 0.2568e4 * (sigma_X ^ 9) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) - 0.3456e4 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 - 0.1536e4 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.1536e4 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) + 0.2880e4 * (sigma_X ^ 11) * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.5760e4 * (sigma_X ^ 11) * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.2880e4 * (sigma_X ^ 11) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.384e3 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.768e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) + 0.768e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0 - 0.3264e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * tau0 * x(6) - 0.960e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.1152e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2)) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 6) / 0.8e1 - (0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 12) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) + 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 12) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) + 0.960e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) - 0.960e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.288e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) - 0.288e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.1728e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * (tau0 ^ 2) + 0.1728e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * (x(6) ^ 2) + 0.2880e4 * (sigma_X ^ 11) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) - 0.864e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.864e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) - 0.768e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 + 0.96e2 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.1984e4 * (sigma_X ^ 13) * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.3968e4 * (sigma_X ^ 13) * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.1984e4 * (sigma_X ^ 13) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0 + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) - 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) - 0.192e3 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.3456e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * tau0 * x(6)) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 4) / 0.8e1 - (0.512e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) - 0.1664e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 12) * sqrt(pi) * tau0 * x(6) + 0.192e3 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) + 0.1984e4 * (sigma_X ^ 13) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) - 0.192e3 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) - 0.768e3 * (sigma_X ^ 15) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.64e2 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) - 0.1536e4 * (sigma_X ^ 15) * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.768e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) - 0.192e3 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.768e3 * (sigma_X ^ 15) * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.832e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 12) * sqrt(pi) * (tau0 ^ 2) + 0.64e2 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) + 0.192e3 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) - 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) + 0.832e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) + 0.512e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 2) / 0.8e1 - (-0.256e3 * (sigma_X ^ 17) * (abs(cg) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.128e3 * (sigma_X ^ 17) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.128e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 14) * sqrt(pi) * (tau0 ^ 2) + 0.768e3 * (sigma_X ^ 15) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.128e3 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) - 0.256e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 14) * sqrt(pi) * tau0 * x(6) + 0.128e3 * (sigma_X ^ 17) * k * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / 0.8e1 - (16 / (x(5) ^ 2 + sigma_X ^ 2) ^ 4 / (x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4 * sigma_X ^ 16 / x(5) ^ 2) + (-0.3e1 / 0.4e1 * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 15) - 0.9e1 * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 2) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 13) - 0.93e2 / 0.2e1 * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 11) - 0.135e3 * (sigma_X ^ 6) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 9) - 0.963e3 / 0.4e1 * (sigma_X ^ 8) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 7) - 0.270e3 * (sigma_X ^ 10) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 5) - 0.186e3 * (sigma_X ^ 12) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 3) - 0.72e2 * (sigma_X ^ 14) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * x(5) - 0.12e2 * (sigma_X ^ 16) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) / x(5)) / x(1) + (Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 16) / 0.2e1 + 0.1e1 / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 15) + 0.6e1 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 2) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 14) + 0.12e2 * (sigma_X ^ 2) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 13) + 0.31e2 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 12) + 0.62e2 * (sigma_X ^ 4) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 11) + 0.90e2 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 6) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 10) + 0.180e3 * (sigma_X ^ 6) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 9) + 0.321e3 / 0.2e1 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 8) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 8) + 0.321e3 * (sigma_X ^ 8) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 7) + 0.180e3 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 10) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 6) + 0.360e3 * (sigma_X ^ 10) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 5) + 0.124e3 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 12) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 4) + 0.248e3 * (sigma_X ^ 12) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 3) + 0.48e2 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 14) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 2) + 0.96e2 * (sigma_X ^ 14) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * x(5) + 0.8e1 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 16) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) + 0.16e2 * (sigma_X ^ 16) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * x(3) * Ic / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) / x(5)) / x(1) ^ 2;</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bx%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg1 = 0.0e0 == -(-0.144e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(6) * x(3) - 0.112e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(6) * x(3) - 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * x(5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(6) * x(3) + 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(4) * tau0 + 0.288e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(4) * tau0 + 0.288e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(4) * tau0 + 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(4) * tau0 - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(6) * x(3) - 0.80e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(6) * x(3) - 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(4) * x(6) - 0.288e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(4) * x(6) - 0.288e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(4) * x(6) - 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(4) * x(6) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 5) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (sigma_X ^ 6) - 0.5e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 9) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * x(6) * (sigma_X ^ 2) - 0.4e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 7) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * x(6) * (sigma_X ^ 4) + 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 5) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * x(6) * (sigma_X ^ 6) + 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 3) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * x(6) * (sigma_X ^ 8) - 0.2e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) - 0.12e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) - 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 3) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (sigma_X ^ 8) + 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * x(5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * x(6) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * x(5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 + 0.24e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) + 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * x(5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) - 0.24e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * x(5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) + 0.2e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) + 0.12e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) + 0.5e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 9) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (sigma_X ^ 2) + 0.4e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 7) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (sigma_X ^ 4) + 0.33e2 * x(3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 5) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 8) + 0.63e2 * x(3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 7) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 6) + 0.66e2 * x(3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 9) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 4) + 0.36e2 * x(3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 11) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 2) + x(3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sigma_X * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 12) + 0.9e1 * x(3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 3) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 10) + 0.8e1 * Ixi * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 13) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) + 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(4) + 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(4) + 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(3) + 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * x(5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(3) + 0.56e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(3) + 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(4) + 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 11) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * x(6) + 0.240e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * x(6) + 0.432e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * x(6) + 0.336e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * x(6) + 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * x(6) - 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 11) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * tau0 - 0.240e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * tau0 - 0.432e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * tau0 - 0.336e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * tau0 - 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * tau0 + 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(3) + 0.40e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(3) + 0.72e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * x(3) + 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(4) + 0.40e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(3) + 0.72e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(3) + 0.56e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(3) + 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * x(5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 2) * x(3) - 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) - 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) - 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) - 0.4e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * (x(5) ^ 11) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) - 0.6e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * x(6) - 0.36e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * x(6) - 0.72e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * x(6) - 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * x(5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * x(6) - 0.28e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * (x(5) ^ 9) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) - 0.76e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) - 0.100e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) + 0.6e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * (x(5) ^ 7) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (x(6) ^ 2) + 0.36e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (x(6) ^ 2) + 0.72e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (x(6) ^ 2) + 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * x(5) * x(1) ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * (x(6) ^ 2) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 12) * x(5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) + Ixi * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sigma_X * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 12) + 0.9e1 * Ixi * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 3) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 10) + 0.33e2 * Ixi * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 5) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 8) + 0.63e2 * Ixi * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 7) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 6) + 0.66e2 * Ixi * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 9) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 4) + 0.36e2 * Ixi * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 11) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 2) + 0.8e1 * x(3) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 13) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 11) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * x(6) + exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * x(1) ^ 2 * (x(5) ^ 11) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0) / x(1) ^ 2 / x(5) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.7e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.7e1 / 0.2e1));</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bx%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg2 = 0.0e0 == (-sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 14) / 0.4e1 - 0.3e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 2) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 12) - 0.31e2 / 0.2e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 10) - 0.45e2 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 6) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 8) - 0.321e3 / 0.4e1 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 8) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 6) - 0.90e2 * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 10) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 4) - 0.62e2 * (sigma_X ^ 12) * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * (x(5) ^ 2) - 0.24e2 * (sigma_X ^ 14) * sqrt(0.2e1) / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) - 0.4e1 / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * sqrt(0.2e1) * (sigma_X ^ 16) / (x(5) ^ 2)) * x(1) ^ 2 - (4 * x(4) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2) ^ 4 / (x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4 * x(5) ^ 16) + (0.2e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.192e3 * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 3) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 14) / 0.4e1 + (0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * tau0 * x(6) + 0.4e1 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sigma_X * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) + 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) + 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) - 0.992e3 * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 5) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 - 0.4e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) - 0.4e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) + 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3)) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 12) / 0.4e1 + (-0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.96e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) + 0.640e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) + 0.96e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.32e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) - 0.2880e4 * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 7) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 2) + 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) + 0.42e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 2) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) - 0.1280e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 2) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 + 0.48e2 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 3) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.32e2 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * tau0 * x(6) + 0.640e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.32e2 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 2) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) + 0.96e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 10) / 0.4e1 + (-0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) + 0.192e3 * (sigma_X ^ 4) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) - 0.192e3 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 4) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) + 0.1248e4 * (sigma_X ^ 6) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) - 0.1248e4 * (sigma_X ^ 6) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) + 0.52e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 4) + 0.52e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 4) - 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.8e1 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.248e3 * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 5) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.12e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 - 0.576e3 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 4) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) + 0.576e3 * (sigma_X ^ 4) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) - 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) - 0.2048e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 - 0.5136e4 * (sigma_X ^ 9) * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0 - 0.48e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) + 0.32e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) - 0.104e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * tau0 * x(6) + 0.960e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2))) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 8) / 0.4e1 + (-0.448e3 * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (sigma_X ^ 6) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) + 0.448e3 * (sigma_X ^ 6) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) - 0.2112e4 * (sigma_X ^ 8) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.2112e4 * (sigma_X ^ 8) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.416e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 6) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.416e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 6) + 0.720e3 * (sigma_X ^ 7) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.2304e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) - 0.512e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 + 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 + 0.1344e4 * (sigma_X ^ 6) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 6) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) - 0.1344e4 * (sigma_X ^ 6) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) - 0.144e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) - 0.5760e4 * (sigma_X ^ 11) * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.2160e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.832e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * tau0 * x(6) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 4) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 6) / 0.4e1 + (-0.512e3 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) + 0.1968e4 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) + 0.512e3 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) - 0.1968e4 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) - 0.896e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.896e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) - 0.192e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.192e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.928e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (sigma_X ^ 8) + 0.928e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) * (sigma_X ^ 8) + 0.1284e4 * (sigma_X ^ 9) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) + 0.1792e4 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 8) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 + 0.1536e4 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) - 0.1536e4 * (sigma_X ^ 8) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) - 0.288e3 * (sigma_X ^ 10) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.3968e4 * (sigma_X ^ 13) * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.768e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) + 0.768e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0 - 0.1856e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * tau0 * x(6) + 0.2304e4 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.1152e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 6) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2)) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 4) / 0.4e1 + (-0.896e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 12) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.896e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 12) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 4) * x(4) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 4) * x(4) - 0.960e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.960e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) - 0.288e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) + 0.288e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4) + 0.896e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * (tau0 ^ 2) + 0.896e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * (x(6) ^ 2) + 0.1440e4 * (sigma_X ^ 11) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.384e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) * x(4) + 0.864e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) - 0.864e3 * (sigma_X ^ 10) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) + 0.1792e4 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (tau0 ^ 3) * x(6) * x(4) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 10) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * (x(6) ^ 3) * x(4) * tau0 - 0.224e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.1536e4 * (sigma_X ^ 15) * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0 + 0.1024e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) - 0.1536e4 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 8) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) + 0.1216e4 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.1792e4 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * tau0 * x(6)) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) * (x(5) ^ 2) / 0.4e1 + (-0.192e3 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 2) - 0.256e3 * (sigma_X ^ 17) * (x(4) ^ 2) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.320e3 * (sigma_X ^ 12) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 2) + 0.192e3 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * tau0 * x(3) - 0.64e2 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.64e2 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) + 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 16) * x(4) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) - 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 4) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 14) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (x(6) ^ 2) - 0.256e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 14) * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(4) * (tau0 ^ 2) + 0.320e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 12) * sqrt(pi) * (tau0 ^ 2) + 0.192e3 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * x(6) + 0.512e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 3) * tau0 - 0.768e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 2) * (x(6) ^ 2) + 0.512e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (tau0 ^ 3) * x(6) + 0.512e3 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(4) * tau0 - 0.192e3 * (sigma_X ^ 14) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sqrt(0.2e1) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(6) * x(3) + 0.64e2 * (sigma_X ^ 12) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * x(3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 3) + 0.992e3 * (sigma_X ^ 13) * sqrt(pi) * sqrt((x(5) ^ 2 + sigma_X ^ 2)) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.640e3 * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 12) * sqrt(pi) * tau0 * x(6) - 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + sigma_X ^ 2))) * h ^ 2 * (sigma_X ^ 10) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(6) ^ 4)) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / sigma_X * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / 0.4e1 + (96 * sigma_X ^ 14 / (x(5) ^ 2 + sigma_X ^ 2) ^ 4 / (x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4 / x(5) ^ 2) + (16 / (x(5) ^ 2 + sigma_X ^ 2) ^ 4 / (x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4 * sigma_X ^ 16 / x(5) ^ 4) + (Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 13) / 0.2e1 + 0.6e1 * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 2) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 11) + 0.31e2 * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 9) + 0.90e2 * (sigma_X ^ 6) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 7) + 0.321e3 / 0.2e1 * (sigma_X ^ 8) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 5) + 0.180e3 * (sigma_X ^ 10) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 3) + 0.124e3 * (sigma_X ^ 12) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * x(5) + 0.48e2 * (sigma_X ^ 14) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) / x(5) + 0.8e1 * (sigma_X ^ 16) * Ia / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) / (x(5) ^ 3)) / x(1) + (-Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 14) - 0.12e2 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 2) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 12) - 0.62e2 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 4) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 10) - 0.180e3 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 6) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 8) - 0.321e3 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 8) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 6) - 0.360e3 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 10) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 4) - 0.248e3 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 12) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) * (x(5) ^ 2) - 0.96e2 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 14) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) - 0.16e2 * Is / ((x(5) ^ 2 + sigma_X ^ 2) ^ 4) * (sigma_X ^ 16) / ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ 4) * pi ^ (-0.1e1 / 0.2e1) / (x(5) ^ 2)) / x(1) ^ 2;</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bx%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg3 = 0.0e0 == -(-0.192e3 * x(1) ^ 2 * x(4) * (x(5) ^ 7) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) - 0.256e3 * x(1) ^ 2 * x(4) * (x(5) ^ 5) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) - 0.128e3 * x(1) ^ 2 * x(4) * (x(5) ^ 3) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) - 0.64e2 * x(1) ^ 2 * x(4) * (x(5) ^ 9) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) + 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sigma_X * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * tau0 * x(6) + 0.320e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 3) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * tau0 * x(6) + 0.128e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * tau0 * x(6) - 0.64e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * tau0 * (x(6) ^ 3) * sigma_X - 0.64e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 3) * x(6) * sigma_X + 0.96e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 2) * (x(6) ^ 2) * sigma_X + 0.20e2 * sigma_X * (x(5) ^ 9) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 + 0.96e2 * (sigma_X ^ 3) * (x(5) ^ 7) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 + 0.144e3 * (sigma_X ^ 5) * (x(5) ^ 5) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 + 0.64e2 * (sigma_X ^ 7) * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 - 0.2e1 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 8) - 0.32e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) + (x(5) ^ 10) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.64e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 2) * (sigma_X ^ 6) + 0.32e2 * (x(5) ^ 4) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) + 0.16e2 * (x(5) ^ 2) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 8) + 0.8e1 * (x(5) ^ 8) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) + 0.24e2 * (x(5) ^ 6) * Ib * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) - 0.16e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 6) * (sigma_X ^ 2) - 0.48e2 * Id * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 4) * (sigma_X ^ 4) - 0.8e1 * x(1) ^ 2 * x(4) * (x(5) ^ 11) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sigma_X * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (tau0 ^ 2) + 0.16e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (x(6) ^ 4) * sigma_X + 0.16e2 * sqrt(pi) * (x(5) ^ 5) * x(1) ^ 2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * (tau0 ^ 4) * sigma_X - 0.160e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 3) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (tau0 ^ 2) - 0.160e3 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 3) * (x(5) ^ 5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (x(6) ^ 2) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (tau0 ^ 2) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * sigma_X * (x(5) ^ 7) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (x(6) ^ 2) - 0.64e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * (x(5) ^ 3) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * (x(6) ^ 2)) / x(1) ^ 2 / (x(5) ^ 2) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.9e1 / 0.2e1)) / 0.2e1;</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bx%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg4 = 0.0e0 == (0.24e2 * sigma_X * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * (tau0 ^ 2) * x(6) + 0.2e1 * x(1) ^ 2 * x(3) * (x(5) ^ 7) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) + 0.12e2 * x(1) ^ 2 * x(3) * (x(5) ^ 5) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 2) + 0.24e2 * x(1) ^ 2 * x(3) * (x(5) ^ 3) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 4) + 0.16e2 * x(1) ^ 2 * x(3) * x(5) * sqrt(pi) * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6) - 0.16e2 * sigma_X * (x(5) ^ 5) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * x(6) - 0.40e2 * (sigma_X ^ 3) * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * x(6) - 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * x(5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * x(6) + 0.16e2 * sigma_X * (x(5) ^ 5) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * tau0 + 0.40e2 * (sigma_X ^ 3) * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * tau0 + 0.16e2 * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * h * (sigma_X ^ 5) * x(5) * x(1) ^ 2 * sqrt(0.2e1) * sqrt(pi) * tau0 - 0.24e2 * sigma_X * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * tau0 * (x(6) ^ 2) + 0.8e1 * sigma_X * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * (x(6) ^ 3) - 0.8e1 * sigma_X * (x(5) ^ 3) * sqrt(pi) * exp(-((x(6) - tau0) ^ 2 / (x(5) ^ 2 + 2 * sigma_X ^ 2))) * sqrt(0.2e1) * h * x(1) ^ 2 * (tau0 ^ 3) + Ic * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 6) + 0.6e1 * Ic * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 4) * (sigma_X ^ 2) + 0.12e2 * Ic * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (x(5) ^ 2) * (sigma_X ^ 4) + 0.8e1 * Ic * sqrt((x(5) ^ 2 + 2 * sigma_X ^ 2)) * (sigma_X ^ 6)) / x(1) ^ 2 / x(5) * pi ^ (-0.1e1 / 0.2e1) * ((x(5) ^ 2 + 2 * sigma_X ^ 2) ^ (-0.7e1 / 0.2e1));</Text-field>
</Output>
</Group>
<Group labelreference="L665" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY5LUkjbWlHRiQ2JVEnTWF0bGFiRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNiUtRiw2JVEjRjFGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC1JI21vR0YkNi1RIjpGJ0ZALyUmZmVuY2VHRj8vJSpzZXBhcmF0b3JHRj8vJSlzdHJldGNoeUdGPy8lKnN5bW1ldHJpY0dGPy8lKGxhcmdlb3BHRj8vJS5tb3ZhYmxlbGltaXRzR0Y/LyUnYWNjZW50R0Y/LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGVi1GQzYtUSJ+RidGQEZGRkhGSkZMRk5GUEZSL0ZVUSYwLjBlbUYnL0ZYRmduRistRjY2JC1GIzYlLUYsNiVRI0YyRidGL0YyRj1GQEZARkJGKy1GNjYkLUYjNiUtRiw2JVEjRjNGJ0YvRjJGPUZARkBGQkZZRistRjY2JC1GIzYlLUYsNiVRI0Y0RidGL0YyRj1GQEZARkJGKy1GNjYkLUYjNiUtRiw2JVEjRjVGJ0YvRjJGPUZARkBGQkZZRistRjY2JC1GIzYlLUYsNiVRI0Y2RidGL0YyRj1GQEZARkJGPUZA">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEnTWF0bGFiRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNiMtRiw2JVEjRjFGJ0YvRjIvRjNRJ25vcm1hbEYnLUkjbW9HRiQ2LVEiOkYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGVC1GQDYtUSJ+RidGPUZDRkZGSEZKRkxGTkZQL0ZTUSYwLjBlbUYnL0ZWRmVuRistRjY2JC1GIzYjLUYsNiVRI0YyRidGL0YyRj1GP0YrLUY2NiQtRiM2Iy1GLDYlUSNGM0YnRi9GMkY9Rj9GV0YrLUY2NiQtRiM2Iy1GLDYlUSNGNEYnRi9GMkY9Rj9GKy1GNjYkLUYjNiMtRiw2JVEjRjVGJ0YvRjJGPUY/RldGKy1GNjYkLUYjNiMtRiw2JVEjRjZGJ0YvRjJGPUY/</Equation></Text-field>
</Input>
<Output>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bimag,%20real,%20x%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {imag, real, x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg5 = (h ^ 2 * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) ^ 2 + h / sigma_X ^ 2 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - h * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - 0.3e1 * x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) * (0.2e1 * real(uS) * cos(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2) + 0.2e1 * imag(uS) * sin(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2)) - x(1) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2 * (0.2e1 * real(uS) ^ 2 * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) - 0.2e1 * imag(uS) ^ 2 * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) + 0.4e1 * imag(uS) * real(uS) * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2));</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bimag,%20real,%20x%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {imag, real, x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg6 = (h ^ 2 * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) ^ 2 + h / sigma_X ^ 2 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - h * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2) * x(1) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) * (0.2e1 * real(uS) * cos(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2) - 0.2e1 * imag(uS) * sin(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2)) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2 * (0.2e1 * imag(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) - 0.2e1 * real(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) + 0.4e1 * imag(uS) * real(uS) * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2));</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bimag,%20real,%20x%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {imag, real, x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg7 = (h ^ 2 * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) ^ 2 + h / sigma_X ^ 2 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - h * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2) * x(1) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) * (t - x(6)) * (0.2e1 * real(uS) * cos(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2) - 0.2e1 * imag(uS) * sin(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2)) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2 * (t - x(6)) * (0.2e1 * imag(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) - 0.2e1 * real(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) + 0.4e1 * imag(uS) * real(uS) * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2));</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bimag,%20real,%20x%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {imag, real, x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg8 = (h ^ 2 * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) ^ 2 + h / sigma_X ^ 2 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - h * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2) * x(1) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) * (t - x(6)) ^ 2 * (0.2e1 * real(uS) * cos(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2) - 0.2e1 * imag(uS) * sin(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2)) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2 * (t - x(6)) ^ 2 * (0.2e1 * imag(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) - 0.2e1 * real(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) + 0.4e1 * imag(uS) * real(uS) * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2));</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bimag,%20real,%20x%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {imag, real, x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg9 = (h ^ 2 * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) ^ 2 + h / sigma_X ^ 2 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - h * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - 0.3e1 * x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2) * x(1) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) * (t - x(6)) ^ 2 / x(5) ^ 3 * (0.2e1 * real(uS) * cos(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2) + 0.2e1 * imag(uS) * sin(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2)) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2 * (t - x(6)) ^ 2 / x(5) ^ 3 * (0.2e1 * real(uS) ^ 2 * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) - 0.2e1 * imag(uS) ^ 2 * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) + 0.4e1 * imag(uS) * real(uS) * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2));</Text-field>
<Text-field style="HyperlinkWarning" layout="HyperlinkWarning"><Hyperlink linktarget="http://www.maplesoft.com/support/help/errors/view.aspx?path=Warning,%20the%20function%20names%20%7Bimag,%20real,%20x%7D%20are%20not%20recognized%20in%20the%20target%20language" hyperlink="true"><Font style="HyperlinkWarning">Warning, the function names {imag, real, x} are not recognized in the target language</Font></Hyperlink></Text-field>
</Output>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output">cg10 = (h ^ 2 * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) ^ 2 + h / sigma_X ^ 2 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - h * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2) * x(1) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) * (-x(3) - 0.2e1 * x(4) * (t - x(6))) * (0.2e1 * real(uS) * cos(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2) - 0.2e1 * imag(uS) * sin(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2)) - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2 * (-x(3) - 0.2e1 * x(4) * (t - x(6))) * (0.2e1 * imag(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) - 0.2e1 * real(uS) ^ 2 * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) + 0.4e1 * imag(uS) * real(uS) * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2)) + (h ^ 2 * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) ^ 2 + h / sigma_X ^ 2 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - h * (t - tau0) ^ 2 / sigma_X ^ 4 * exp(-(t - tau0) ^ 2 / sigma_X ^ 2 / 0.2e1) - 0.3e1 * x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2) * x(1) * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) * (t - x(6)) * (0.2e1 * real(uS) * cos(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2) + 0.2e1 * imag(uS) * sin(x(2) + x(3) * (t - x(6)) + x(4) * (t - x(6)) ^ 2)) / x(5) ^ 2 - x(1) ^ 2 * exp(-(t - x(6)) ^ 2 / x(5) ^ 2 / 0.2e1) ^ 2 * (t - x(6)) * (0.2e1 * real(uS) ^ 2 * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) - 0.2e1 * imag(uS) ^ 2 * cos(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2) + 0.4e1 * imag(uS) * real(uS) * sin(0.2e1 * x(2) + 0.2e1 * x(3) * (t - x(6)) + 0.2e1 * x(4) * (t - x(6)) ^ 2)) / x(5) ^ 2;</Text-field>
</Output>
</Group>
<Group labelreference="L662" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal">subLatex := a(z) = a, b(z) = b, c(z)=c, d(z) = d, s(z)=sigma, xi(z) = xi, Ui = imag(uS), Ur=real(uS), alpha = h_phi, beta = sigma_phi: </Text-field>
</Input>
</Group>
<Group labelreference="L661" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZXLUkjbWlHRiQ2JVEjRjFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSJ+RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJmNvbG9uZXE7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjI3Nzc3NzhlbUYnL0ZORlNGNS1GLDYlUSVzdWJzRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNiYtRlk2Ji1GIzYkLUYsNiVRKXN1YkxhdGV4RidGL0YyRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZKL0ZOUSwwLjMzMzMzMzNlbUYnLUZZNiQtRiM2JC1GLDYlUSVlRklhRidGL0YyRjlGOUY5RjktRjY2LVEiO0YnRjlGO0Znb0ZARkJGREZGRkhGSkZURjUtRiw2JVEjRjJGJ0YvRjJGNUZPRjVGVS1GWTYkLUYjNiZGZ25GZG8tRlk2JC1GIzYkLUYsNiVRJWVGSWJGJ0YvRjJGOUY5RjlGOUZhcEY1RjUtRiw2JVEjRjNGJ0YvRjJGNUZPRjVGVS1GWTYkLUYjNiZGZ25GZG8tRlk2JC1GIzYkLUYsNiVRJWVGSWNGJ0YvRjJGOUY5RjlGOUZhcEY1RjUtRiw2JVEjRjRGJ0YvRjJGNUZPRjVGVS1GWTYkLUYjNiZGZ25GZG8tRlk2JC1GIzYkLUYsNiVRJWVGSWRGJ0YvRjJGOUY5RjlGOUZhcEY1RjUtRiw2JVEjRjVGJ0YvRjJGNUZPRjVGVS1GWTYkLUYjNiZGZ25GZG8tRlk2JC1GIzYkLUYsNiVRJWVGSXNGJ0YvRjJGOUY5RjlGOUZhcEY1RjUtRiw2JVEjRjZGJ0YvRjJGNUZPRjVGVS1GWTYkLUYjNiZGZ25GZG8tRlk2JC1GIzYkLUYsNiVRJmVGSXhpRidGL0YyRjlGOUY5RjlGYXAvJStleGVjdXRhYmxlR0Y9Rjk=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZVLUkjbWlHRiQ2JVEjRjFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSJ+RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJmNvbG9uZXE7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjI3Nzc3NzhlbUYnL0ZORlNGNS1GLDYlUSVzdWJzRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNiUtRlk2Ji1GIzYjLUYsNiVRKXN1YkxhdGV4RidGL0YyRjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJy1GWTYkLUYjNiMtRiw2JVElZUZJYUYnRi9GMkY5RjktRjY2LVEiO0YnRjlGO0Znb0ZARkJGREZGRkhGSkZURjUtRiw2JVEjRjJGJ0YvRjJGNUZPRjVGVS1GWTYkLUYjNiVGZ25GZG8tRlk2JC1GIzYjLUYsNiVRJWVGSWJGJ0YvRjJGOUY5RmFwRjVGNS1GLDYlUSNGM0YnRi9GMkY1Rk9GNUZVLUZZNiQtRiM2JUZnbkZkby1GWTYkLUYjNiMtRiw2JVElZUZJY0YnRi9GMkY5RjlGYXBGNUY1LUYsNiVRI0Y0RidGL0YyRjVGT0Y1RlUtRlk2JC1GIzYlRmduRmRvLUZZNiQtRiM2Iy1GLDYlUSVlRklkRidGL0YyRjlGOUZhcEY1RjUtRiw2JVEjRjVGJ0YvRjJGNUZPRjVGVS1GWTYkLUYjNiVGZ25GZG8tRlk2JC1GIzYjLUYsNiVRJWVGSXNGJ0YvRjJGOUY5RmFwRjVGNS1GLDYlUSNGNkYnRi9GMkY1Rk9GNUZVLUZZNiQtRiM2JUZnbkZkby1GWTYkLUYjNiMtRiw2JVEmZUZJeGlGJ0YvRjJGOUY5RmFw</Equation></Text-field>
</Input>
<Output>
<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjRjFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtRiM2KC1JKG1mZW5jZWRHRiQ2JC1GIzYqLUkmbWZyYWNHRiQ2KC1GIzYqLUklbXN1cEdGJDYlLUYsNiVRJmhfcGhpRidGL0YyLUkjbW5HRiQ2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaG8tRmhuNiUtRlQ2JC1GIzYmLUYsNiVRInRGJ0YvRjItRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZncC1GLDYlUSgmIzk2NDswRidGL0YyRjlGOUZdb0Zhb0Zkby1GaG42JS1GVDYkLUZobjYlLUY2Ni1RLyZFeHBvbmVudGlhbEU7RidGOUY7Rj5GQEZCRkRGRkZIRmdvL0ZOUSwwLjExMTExMTFlbUYnLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZwRmhwLUYjNigtRlk2KC1GXm82JFEiMUYnRjlGXW8vJS5saW5ldGhpY2tuZXNzR0Zici8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Znci8lKWJldmVsbGVkR0Y9RmRvLUZZNigtRiM2JkZqby8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUYjNiYtRmhuNiUtRiw2JVEqc2lnbWFfcGhpRidGL0YyRl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GYHNGY3NGOS1GIzYmLUZobjYlRmlzLUZebzYkUSI0RidGOUZhb0Zgc0Zjc0Y5RmNyRmVyRmhyRmpyLUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGZnBGaHAtRlk2KC1GIzYoRmpuRmRvRmBxRmBzRmNzRjlGZXNGY3JGZXJGaHJGanJGY3AtRlk2KC1GIzYqRmpuRmRvRmpvRmRvRmBxRmBzRmNzRjlGXHRGY3JGZXJGaHJGanJGY3AtRiM2KC1GXm82JFEiM0YnRjlGZG8tRmhuNiUtRiw2JVEiYUYnRi9GMkZdb0Zhb0Zkby1GaG42JS1GVDYkLUZobjYlRmJxLUYjNidGaXEtRiM2KEZeckZkby1GWTYoLUYjNiYtRmhuNiUtRlQ2JC1GIzYmRmBwRmNwLUYsNiVRKCYjOTU4O3xpckYnRi9GMkY5RjlGXW9GYW9GYHNGY3NGOS1GIzYmLUZobjYlLUYsNiVRJyYjOTYzO0YnL0YwRj1GOUZdb0Zhb0Zgc0Zjc0Y5RmNyRmVyRmhyRmpyRmBzRmNzRjlGYHNGY3NGOUZhb0Y5Rl1vRmFvRjlGOUY5RmRvRlx2RmRvLUZUNiQtRiM2Ji1GIzYoRl1vRmRvLUYjNigtRiw2JVElcmVhbEYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGZ29GaW8tRlQ2JC1GIzYmLUYsNiVRI3VTRidGL0YyRmBzRmNzRjlGOUZgc0Zjc0Y5RmRvLUYjNigtRiw2JVEkY29zRidGZndGOUZieC1GVDYkLUYjNiYtRiM2KC1GLDYlUSNifGlyRidGL0YyRmN0LUYjNiYtRiw2JVEjY3xpckYnRi9GMkZkb0ZodkY5RmN0LUYjNiYtRiw2JVEjZHxpckYnRi9GMkZkb0ZmdkY5RjlGYHNGY3NGOUY5RmBzRmNzRjlGOUZjdC1GIzYoRl1vRmRvLUYjNigtRiw2JVElaW1hZ0YnRi9GMkZieEZleEZgc0Zjc0Y5RmRvLUYjNigtRiw2JVEkc2luRidGZndGOUZieEZheUZgc0Zjc0Y5RjlGOUY5RjlGY3AtRiM2KEZldUZkb0ZodUZkby1GVDYkLUYjNigtRiM2KEZdb0Zkby1GaG42JUZdeEZdb0Zhb0Zkby1GIzYoRl55RmJ4LUZUNiQtRiM2Ji1GIzYoLUYjNiZGXW9GZG9GZ3lGOUZjdC1GIzYoRl1vRmRvRlx6RmRvRmh2RjlGY3QtRiM2KEZdb0Zkb0ZhekZkb0ZmdkY5RjlGYHNGY3NGOUY5RmBzRmNzRjlGOUZjcC1GIzYoRl1vRmRvLUZobjYlRmZ6Rl1vRmFvRmRvRmpbbEY5RmN0LUYjNipGYHRGZG9GZnpGZG9GXXhGZG8tRiM2KEZdW2xGYnhGXFxsRmBzRmNzRjlGOUY5RjlGOUY5RmBzRmNzRjk=">LCYqKCwqKipJJmhfcGhpRzYiIiIjLCZJInRHRiciIiJJJXRhdTBHRichIiJGKEkqc2lnbWFfcGhpR0YnISIlLUkkZXhwRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YnNiMsJComRilGKEYuISIjI0YtRihGKEYrKihGJkYrRi5GOEYwRitGKyoqRiZGK0YpRihGLkYvRjBGK0YtKiZJImFHRidGKC1GMTYjLCQqJiwmRipGK0kkeGl8aXJHRidGLUYoSSZzaWdtYUdGJ0Y4RjlGKCEiJEYrRj5GKywmKiYtSSVyZWFsR0YyNiNJI3VTR0YnRistSSRjb3NHRjI2IywoSSNifGlyR0YnRisqJkkjY3xpckdGJ0YrRkJGK0YrKiZJI2R8aXJHRidGK0ZCRihGK0YrRigqJi1JJWltYWdHRidGSkYrLUkkc2luR0YyRk5GK0YoRitGKyooRj1GK0Y+RigsKComRkhGKC1GTTYjLChGUEYoRlFGKEZTRihGK0YoKiZGVkYoRmduRitGOCooRlZGK0ZIRistRllGaG5GKyIiJUYrRi0=</Equation></Text-field>
</Output>
<Output>
<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjRjJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtRiM2Ki1JKG1mZW5jZWRHRiQ2JC1GIzYqLUkmbWZyYWNHRiQ2KC1GIzYqLUklbXN1cEdGJDYlLUYsNiVRJmhfcGhpRidGL0YyLUkjbW5HRiQ2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaG8tRmhuNiUtRlQ2JC1GIzYmLUYsNiVRInRGJ0YvRjItRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZncC1GLDYlUSgmIzk2NDswRidGL0YyRjlGOUZdb0Zhb0Zkby1GaG42JS1GVDYkLUZobjYlLUY2Ni1RLyZFeHBvbmVudGlhbEU7RidGOUY7Rj5GQEZCRkRGRkZIRmdvL0ZOUSwwLjExMTExMTFlbUYnLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZwRmhwLUYjNigtRlk2KC1GXm82JFEiMUYnRjlGXW8vJS5saW5ldGhpY2tuZXNzR0Zici8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Znci8lKWJldmVsbGVkR0Y9RmRvLUZZNigtRiM2JkZqby8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUYjNiYtRmhuNiUtRiw2JVEqc2lnbWFfcGhpRidGL0YyRl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GYHNGY3NGOS1GIzYmLUZobjYlRmlzLUZebzYkUSI0RidGOUZhb0Zgc0Zjc0Y5RmNyRmVyRmhyRmpyLUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGZnBGaHAtRlk2KC1GIzYoRmpuRmRvRmBxRmBzRmNzRjlGZXNGY3JGZXJGaHJGanJGY3AtRlk2KC1GIzYqRmpuRmRvRmpvRmRvRmBxRmBzRmNzRjlGXHRGY3JGZXJGaHJGanJGY3AtRiM2Ji1GaG42JS1GLDYlUSJhRidGL0YyRl1vRmFvRmRvLUZobjYlLUZUNiQtRmhuNiVGYnEtRiM2J0ZpcS1GIzYoRl5yRmRvLUZZNigtRiM2Ji1GaG42JS1GVDYkLUYjNiZGYHBGY3AtRiw2JVEoJiM5NTg7fGlyRidGL0YyRjlGOUZdb0Zhb0Zgc0Zjc0Y5LUYjNiYtRmhuNiUtRiw2JVEnJiM5NjM7RicvRjBGPUY5Rl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GOUY5RjlGZG9GYnVGZG9GaXVGZG8tRlQ2JC1GIzYmLUYjNihGXW9GZG8tRiM2KC1GLDYlUSVyZWFsRidGL0YyLUY2Ni1RMCZBcHBseUZ1bmN0aW9uO0YnRjlGO0Y+RkBGQkZERkZGSEZnb0Zpby1GVDYkLUYjNiYtRiw2JVEjdVNGJ0YvRjJGYHNGY3NGOUY5RmBzRmNzRjlGZG8tRiM2KC1GLDYlUSRjb3NGJ0Zjd0Y5Rl94LUZUNiQtRiM2Ji1GIzYoLUYsNiVRI2J8aXJGJ0YvRjJGY3QtRiM2Ji1GLDYlUSNjfGlyRidGL0YyRmRvRmV2RjlGY3QtRiM2Ji1GLDYlUSNkfGlyRidGL0YyRmRvRmN2RjlGOUZgc0Zjc0Y5RjlGYHNGY3NGOUY5RmNwLUYjNihGXW9GZG8tRiM2KC1GLDYlUSVpbWFnRidGL0YyRl94RmJ4RmBzRmNzRjlGZG8tRiM2KC1GLDYlUSRzaW5GJ0Zjd0Y5Rl94Rl55RmBzRmNzRjlGOUY5RjlGOUZjcC1GIzYoRmB1RmRvRmV1RmRvLUZUNiQtRiM2KC1GIzYoRl1vRmRvLUZobjYlRmN6Rl1vRmFvRmRvLUYjNihGanpGX3gtRlQ2JC1GIzYmLUYjNigtRiM2JkZdb0Zkb0ZkeUY5RmN0LUYjNihGXW9GZG9GaXlGZG9GZXZGOUZjdC1GIzYoRl1vRmRvRl56RmRvRmN2RjlGOUZgc0Zjc0Y5RjlGYHNGY3NGOUY5RmNwLUYjNihGXW9GZG8tRmhuNiVGandGXW9GYW9GZG9GZ1tsRjlGY3QtRiM2KkZgdEZkb0ZjekZkb0Zqd0Zkby1GIzYoRlt5Rl94RmlbbEZgc0Zjc0Y5RjlGOUY5RjlGOUZgc0Zjc0Y5">LCYqKiwqKipJJmhfcGhpRzYiIiIjLCZJInRHRiciIiJJJXRhdTBHRichIiJGKEkqc2lnbWFfcGhpR0YnISIlLUkkZXhwRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YnNiMsJComRilGKEYuISIjI0YtRihGKEYrKihGJkYrRi5GOEYwRitGKyoqRiZGK0YpRihGLkYvRjBGK0YtKiZJImFHRidGKC1GMTYjLCQqJiwmRipGK0kkeGl8aXJHRidGLUYoSSZzaWdtYUdGJ0Y4RjlGKEYtRitGPUYrRj5GKywmKiYtSSVyZWFsR0YyNiNJI3VTR0YnRistSSRjb3NHRjI2IywoSSNifGlyR0YnRisqJkkjY3xpckdGJ0YrRkJGK0YrKiZJI2R8aXJHRidGK0ZCRihGK0YrRigqJi1JJWltYWdHRidGSUYrLUkkc2luR0YyRk1GK0Y4RitGKyooRj1GKEY+RigsKComRlVGKC1GWDYjLChGT0YoRlBGKEZSRihGK0YoKiZGR0YoRmZuRitGOCooRlVGK0ZHRistRkxGZ25GKyIiJUYrRi0=</Equation></Text-field>
</Output>
<Output>
<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjRjNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtRiM2LC1JKG1mZW5jZWRHRiQ2JC1GIzYqLUkmbWZyYWNHRiQ2KC1GIzYqLUklbXN1cEdGJDYlLUYsNiVRJmhfcGhpRidGL0YyLUkjbW5HRiQ2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaG8tRmhuNiUtRlQ2JC1GIzYmLUYsNiVRInRGJ0YvRjItRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZncC1GLDYlUSgmIzk2NDswRidGL0YyRjlGOUZdb0Zhb0Zkby1GaG42JS1GVDYkLUZobjYlLUY2Ni1RLyZFeHBvbmVudGlhbEU7RidGOUY7Rj5GQEZCRkRGRkZIRmdvL0ZOUSwwLjExMTExMTFlbUYnLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZwRmhwLUYjNigtRlk2KC1GXm82JFEiMUYnRjlGXW8vJS5saW5ldGhpY2tuZXNzR0Zici8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Znci8lKWJldmVsbGVkR0Y9RmRvLUZZNigtRiM2JkZqby8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUYjNiYtRmhuNiUtRiw2JVEqc2lnbWFfcGhpRidGL0YyRl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GYHNGY3NGOS1GIzYmLUZobjYlRmlzLUZebzYkUSI0RidGOUZhb0Zgc0Zjc0Y5RmNyRmVyRmhyRmpyLUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGZnBGaHAtRlk2KC1GIzYoRmpuRmRvRmBxRmBzRmNzRjlGZXNGY3JGZXJGaHJGanJGY3AtRlk2KC1GIzYqRmpuRmRvRmpvRmRvRmBxRmBzRmNzRjlGXHRGY3JGZXJGaHJGanJGY3AtRiM2Ji1GaG42JS1GLDYlUSJhRidGL0YyRl1vRmFvRmRvLUZobjYlLUZUNiQtRmhuNiVGYnEtRiM2J0ZpcS1GIzYoRl5yRmRvLUZZNigtRiM2Ji1GaG42JS1GVDYkLUYjNiZGYHBGY3AtRiw2JVEoJiM5NTg7fGlyRidGL0YyRjlGOUZdb0Zhb0Zgc0Zjc0Y5LUYjNiYtRmhuNiUtRiw2JVEnJiM5NjM7RicvRjBGPUY5Rl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GOUY5RjlGZG9GYnVGZG9GaXVGZG9GZXZGZG8tRlQ2JC1GIzYmLUYjNihGXW9GZG8tRiM2KC1GLDYlUSVyZWFsRidGL0YyLUY2Ni1RMCZBcHBseUZ1bmN0aW9uO0YnRjlGO0Y+RkBGQkZERkZGSEZnb0Zpby1GVDYkLUYjNiYtRiw2JVEjdVNGJ0YvRjJGYHNGY3NGOUY5RmBzRmNzRjlGZG8tRiM2KC1GLDYlUSRjb3NGJ0Zjd0Y5Rl94LUZUNiQtRiM2Ji1GIzYoLUYsNiVRI2J8aXJGJ0YvRjJGY3QtRiM2Ji1GLDYlUSNjfGlyRidGL0YyRmRvRmV2RjlGY3QtRiM2Ji1GLDYlUSNkfGlyRidGL0YyRmRvRmN2RjlGOUZgc0Zjc0Y5RjlGYHNGY3NGOUY5RmNwLUYjNihGXW9GZG8tRiM2KC1GLDYlUSVpbWFnRidGL0YyRl94RmJ4RmBzRmNzRjlGZG8tRiM2KC1GLDYlUSRzaW5GJ0Zjd0Y5Rl94Rl55RmBzRmNzRjlGOUY5RjlGOUZjcC1GIzYqRmB1RmRvRmV1RmRvRmV2RmRvLUZUNiQtRiM2KC1GIzYoRl1vRmRvLUZobjYlRmN6Rl1vRmFvRmRvLUYjNihGanpGX3gtRlQ2JC1GIzYmLUYjNigtRiM2JkZdb0Zkb0ZkeUY5RmN0LUYjNihGXW9GZG9GaXlGZG9GZXZGOUZjdC1GIzYoRl1vRmRvRl56RmRvRmN2RjlGOUZgc0Zjc0Y5RjlGYHNGY3NGOUY5RmNwLUYjNihGXW9GZG8tRmhuNiVGandGXW9GYW9GZG9GZ1tsRjlGY3QtRiM2KkZgdEZkb0ZjekZkb0Zqd0Zkby1GIzYoRlt5Rl94RmlbbEZgc0Zjc0Y5RjlGOUY5RjlGOUZgc0Zjc0Y5">LCYqLCwqKipJJmhfcGhpRzYiIiIjLCZJInRHRiciIiJJJXRhdTBHRichIiJGKEkqc2lnbWFfcGhpR0YnISIlLUkkZXhwRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YnNiMsJComRilGKEYuISIjI0YtRihGKEYrKihGJkYrRi5GOEYwRitGKyoqRiZGK0YpRihGLkYvRjBGK0YtKiZJImFHRidGKC1GMTYjLCQqJiwmRipGK0kkeGl8aXJHRidGLUYoSSZzaWdtYUdGJ0Y4RjlGKEYtRitGPUYrRj5GK0ZCRissJiomLUklcmVhbEdGMjYjSSN1U0dGJ0YrLUkkY29zR0YyNiMsKEkjYnxpckdGJ0YrKiZJI2N8aXJHRidGK0ZCRitGKyomSSNkfGlyR0YnRitGQkYoRitGK0YoKiYtSSVpbWFnR0YnRklGKy1JJHNpbkdGMkZNRitGOEYrRisqKkY9RihGPkYoRkJGKywoKiZGVUYoLUZYNiMsKEZPRihGUEYoRlJGKEYrRigqJkZHRihGZm5GK0Y4KihGVUYrRkdGKy1GTEZnbkYrIiIlRitGLQ==</Equation></Text-field>
</Output>
<Output>
<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjRjRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtRiM2LC1JKG1mZW5jZWRHRiQ2JC1GIzYqLUkmbWZyYWNHRiQ2KC1GIzYqLUklbXN1cEdGJDYlLUYsNiVRJmhfcGhpRidGL0YyLUkjbW5HRiQ2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaG8tRmhuNiUtRlQ2JC1GIzYmLUYsNiVRInRGJ0YvRjItRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZncC1GLDYlUSgmIzk2NDswRidGL0YyRjlGOUZdb0Zhb0Zkby1GaG42JS1GVDYkLUZobjYlLUY2Ni1RLyZFeHBvbmVudGlhbEU7RidGOUY7Rj5GQEZCRkRGRkZIRmdvL0ZOUSwwLjExMTExMTFlbUYnLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZwRmhwLUYjNigtRlk2KC1GXm82JFEiMUYnRjlGXW8vJS5saW5ldGhpY2tuZXNzR0Zici8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Znci8lKWJldmVsbGVkR0Y9RmRvLUZZNigtRiM2JkZqby8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUYjNiYtRmhuNiUtRiw2JVEqc2lnbWFfcGhpRidGL0YyRl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GYHNGY3NGOS1GIzYmLUZobjYlRmlzLUZebzYkUSI0RidGOUZhb0Zgc0Zjc0Y5RmNyRmVyRmhyRmpyLUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGZnBGaHAtRlk2KC1GIzYoRmpuRmRvRmBxRmBzRmNzRjlGZXNGY3JGZXJGaHJGanJGY3AtRlk2KC1GIzYqRmpuRmRvRmpvRmRvRmBxRmBzRmNzRjlGXHRGY3JGZXJGaHJGanJGY3AtRiM2Ji1GaG42JS1GLDYlUSJhRidGL0YyRl1vRmFvRmRvLUZobjYlLUZUNiQtRmhuNiVGYnEtRiM2J0ZpcS1GIzYoRl5yRmRvLUZZNigtRiM2Ji1GaG42JS1GVDYkLUYjNiZGYHBGY3AtRiw2JVEoJiM5NTg7fGlyRidGL0YyRjlGOUZdb0Zhb0Zgc0Zjc0Y5LUYjNiYtRmhuNiUtRiw2JVEnJiM5NjM7RicvRjBGPUY5Rl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GOUY5RjlGZG9GYnVGZG9GaXVGZG9GY3ZGZG8tRlQ2JC1GIzYmLUYjNihGXW9GZG8tRiM2KC1GLDYlUSVyZWFsRidGL0YyLUY2Ni1RMCZBcHBseUZ1bmN0aW9uO0YnRjlGO0Y+RkBGQkZERkZGSEZnb0Zpby1GVDYkLUYjNiYtRiw2JVEjdVNGJ0YvRjJGYHNGY3NGOUY5RmBzRmNzRjlGZG8tRiM2KC1GLDYlUSRjb3NGJ0Zjd0Y5Rl94LUZUNiQtRiM2Ji1GIzYoLUYsNiVRI2J8aXJGJ0YvRjJGY3QtRiM2Ji1GLDYlUSNjfGlyRidGL0YyRmRvRmV2RjlGY3QtRiM2Ji1GLDYlUSNkfGlyRidGL0YyRmRvRmN2RjlGOUZgc0Zjc0Y5RjlGYHNGY3NGOUY5RmNwLUYjNihGXW9GZG8tRiM2KC1GLDYlUSVpbWFnRidGL0YyRl94RmJ4RmBzRmNzRjlGZG8tRiM2KC1GLDYlUSRzaW5GJ0Zjd0Y5Rl94Rl55RmBzRmNzRjlGOUY5RjlGOUZjcC1GIzYqRmB1RmRvRmV1RmRvRmN2RmRvLUZUNiQtRiM2KC1GIzYoRl1vRmRvLUZobjYlRmN6Rl1vRmFvRmRvLUYjNihGanpGX3gtRlQ2JC1GIzYmLUYjNigtRiM2JkZdb0Zkb0ZkeUY5RmN0LUYjNihGXW9GZG9GaXlGZG9GZXZGOUZjdC1GIzYoRl1vRmRvRl56RmRvRmN2RjlGOUZgc0Zjc0Y5RjlGYHNGY3NGOUY5RmNwLUYjNihGXW9GZG8tRmhuNiVGandGXW9GYW9GZG9GZ1tsRjlGY3QtRiM2KkZgdEZkb0ZjekZkb0Zqd0Zkby1GIzYoRlt5Rl94RmlbbEZgc0Zjc0Y5RjlGOUY5RjlGOUZgc0Zjc0Y5">LCYqLCwqKipJJmhfcGhpRzYiIiIjLCZJInRHRiciIiJJJXRhdTBHRichIiJGKEkqc2lnbWFfcGhpR0YnISIlLUkkZXhwRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YnNiMsJComRilGKEYuISIjI0YtRihGKEYrKihGJkYrRi5GOEYwRitGKyoqRiZGK0YpRihGLkYvRjBGK0YtKiZJImFHRidGKC1GMTYjLCQqJiwmRipGK0kkeGl8aXJHRidGLUYoSSZzaWdtYUdGJ0Y4RjlGKEYtRitGPUYrRj5GK0ZCRigsJiomLUklcmVhbEdGMjYjSSN1U0dGJ0YrLUkkY29zR0YyNiMsKEkjYnxpckdGJ0YrKiZJI2N8aXJHRidGK0ZCRitGKyomSSNkfGlyR0YnRitGQkYoRitGK0YoKiYtSSVpbWFnR0YnRklGKy1JJHNpbkdGMkZNRitGOEYrRisqKkY9RihGPkYoRkJGKCwoKiZGVUYoLUZYNiMsKEZPRihGUEYoRlJGKEYrRigqJkZHRihGZm5GK0Y4KihGVUYrRkdGKy1GTEZnbkYrIiIlRitGLQ==</Equation></Text-field>
</Output>
<Output>
<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjRjVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSZtZnJhY0dGJDYoLUYjNi4tSShtZmVuY2VkR0YkNiQtRiM2Ki1GUjYoLUYjNiotSSVtc3VwR0YkNiUtRiw2JVEmaF9waGlGJ0YvRjItSSNtbkdGJDYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZqby1Gam42JS1GVzYkLUYjNiYtRiw2JVEidEYnRi9GMi1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwLUYsNiVRKCYjOTY0OzBGJ0YvRjJGOUY5Rl9vRmNvRmZvLUZqbjYlLUZXNiQtRmpuNiUtRjY2LVEvJkV4cG9uZW50aWFsRTtGJ0Y5RjtGPkZARkJGREZGRkhGaW8vRk5RLDAuMTExMTExMWVtRictRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGaHBGanAtRiM2KC1GUjYoLUZgbzYkUSIxRidGOUZfby8lLmxpbmV0aGlja25lc3NHRmRyLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmlyLyUpYmV2ZWxsZWRHRj1GZm8tRlI2KC1GIzYmRlxwLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjktRiM2Ji1Gam42JS1GLDYlUSpzaWdtYV9waGlGJ0YvRjJGX29GY29GYnNGZXNGOUZlckZnckZqckZcc0Zic0Zlc0Y5RmJzRmVzRjlGY29GOUZfb0Zjb0Zic0Zlc0Y5LUYjNiYtRmpuNiVGW3QtRmBvNiRRIjRGJ0Y5RmNvRmJzRmVzRjlGZXJGZ3JGanJGXHMtRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZocEZqcC1GUjYoLUYjNihGXG9GZm9GYnFGYnNGZXNGOUZnc0ZlckZnckZqckZcc0ZlcC1GUjYoLUYjNipGXG9GZm9GXHBGZm9GYnFGYnNGZXNGOUZedEZlckZnckZqckZcc0ZlcC1GIzYoLUZgbzYkUSIzRidGOUZmby1Gam42JS1GLDYlUSJhRidGL0YyRl9vRmNvRmZvLUZqbjYlLUZXNiQtRmpuNiVGZHEtRiM2J0Zbci1GIzYoRmByRmZvLUZSNigtRiM2Ji1Gam42JS1GVzYkLUYjNiZGYnBGZXAtRiw2JVEoJiM5NTg7fGlyRidGL0YyRjlGOUZfb0Zjb0Zic0Zlc0Y5LUYjNiYtRmpuNiUtRiw2JVEnJiM5NjM7RicvRjBGPUY5Rl9vRmNvRmJzRmVzRjlGZXJGZ3JGanJGXHNGYnNGZXNGOUZic0Zlc0Y5RmNvRjlGX29GY29GOUY5RjlGZm9GZ3VGZm9GXnZGZm9GaHZGZm8tRlc2JC1GIzYmLUYjNihGX29GZm8tRiM2KC1GLDYlUSVyZWFsRidGL0YyLUY2Ni1RMCZBcHBseUZ1bmN0aW9uO0YnRjlGO0Y+RkBGQkZERkZGSEZpb0ZbcC1GVzYkLUYjNiYtRiw2JVEjdVNGJ0YvRjJGYnNGZXNGOUY5RmJzRmVzRjlGZm8tRiM2KC1GLDYlUSRjb3NGJ0Zod0Y5RmR4LUZXNiQtRiM2Ji1GIzYoLUYsNiVRI2J8aXJGJ0YvRjJGZXQtRiM2Ji1GLDYlUSNjfGlyRidGL0YyRmZvRmp2RjlGZXQtRiM2Ji1GLDYlUSNkfGlyRidGL0YyRmZvRmh2RjlGOUZic0Zlc0Y5RjlGYnNGZXNGOUY5RmV0LUYjNihGX29GZm8tRiM2KC1GLDYlUSVpbWFnRidGL0YyRmR4Rmd4RmJzRmVzRjlGZm8tRiM2KC1GLDYlUSRzaW5GJ0Zod0Y5RmR4RmN5RmJzRmVzRjlGOUY5RjlGYnNGZXNGOS1GIzYmLUZqbjYlRmV3RmJ1RmNvRmJzRmVzRjlGZXJGZ3JGanJGXHNGZXAtRlI2KC1GIzYsRmV1RmZvRmp1RmZvRmh2RmZvLUZXNiQtRiM2KC1GIzYoRl9vRmZvLUZqbjYlRl94Rl9vRmNvRmZvLUYjNihGYHlGZHgtRlc2JC1GIzYmLUYjNigtRiM2JkZfb0Zmb0ZpeUY5RmV0LUYjNihGX29GZm9GXnpGZm9GanZGOUZldC1GIzYoRl9vRmZvRmN6RmZvRmh2RjlGOUZic0Zlc0Y5RjlGYnNGZXNGOUY5RmVwLUYjNihGX29GZm8tRmpuNiVGaHpGX29GY29GZm9GYlxsRjlGZXQtRiM2KkZidEZmb0ZoekZmb0ZfeEZmby1GIzYoRl9bbEZkeEZkXGxGYnNGZXNGOUY5RjlGOUZic0Zlc0Y5RmJbbEZlckZnckZqckZcc0Y5RmJzRmVzRjk=">LCYqLiwqKipJJmhfcGhpRzYiIiIjLCZJInRHRiciIiJJJXRhdTBHRichIiJGKEkqc2lnbWFfcGhpR0YnISIlLUkkZXhwRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YnNiMsJComRilGKEYuISIjI0YtRihGKEYrKihGJkYrRi5GOEYwRitGKyoqRiZGK0YpRihGLkYvRjBGK0YtKiZJImFHRidGKC1GMTYjLCQqJiwmRipGK0kkeGl8aXJHRidGLUYoSSZzaWdtYUdGJ0Y4RjlGKCEiJEYrRj1GK0Y+RitGQkYoRkRGRSwmKiYtSSVyZWFsR0YyNiNJI3VTR0YnRistSSRjb3NHRjI2IywoSSNifGlyR0YnRisqJkkjY3xpckdGJ0YrRkJGK0YrKiZJI2R8aXJHRidGK0ZCRihGK0YrRigqJi1JJWltYWdHRidGSkYrLUkkc2luR0YyRk5GK0YoRitGKyosRj1GKEY+RihGQkYoRkRGRSwoKiZGSEYoLUZNNiMsKEZQRihGUUYoRlNGKEYrRigqJkZWRihGZ25GK0Y4KihGVkYrRkhGKy1GWUZobkYrIiIlRitGLQ==</Equation></Text-field>
</Output>
<Output>
<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjRjZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiotRiM2LC1JKG1mZW5jZWRHRiQ2JC1GIzYqLUkmbWZyYWNHRiQ2KC1GIzYqLUklbXN1cEdGJDYlLUYsNiVRJmhfcGhpRidGL0YyLUkjbW5HRiQ2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaG8tRmhuNiUtRlQ2JC1GIzYmLUYsNiVRInRGJ0YvRjItRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZncC1GLDYlUSgmIzk2NDswRidGL0YyRjlGOUZdb0Zhb0Zkby1GaG42JS1GVDYkLUZobjYlLUY2Ni1RLyZFeHBvbmVudGlhbEU7RidGOUY7Rj5GQEZCRkRGRkZIRmdvL0ZOUSwwLjExMTExMTFlbUYnLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZwRmhwLUYjNigtRlk2KC1GXm82JFEiMUYnRjlGXW8vJS5saW5ldGhpY2tuZXNzR0Zici8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Znci8lKWJldmVsbGVkR0Y9RmRvLUZZNigtRiM2JkZqby8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUYjNiYtRmhuNiUtRiw2JVEqc2lnbWFfcGhpRidGL0YyRl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GYHNGY3NGOS1GIzYmLUZobjYlRmlzLUZebzYkUSI0RidGOUZhb0Zgc0Zjc0Y5RmNyRmVyRmhyRmpyLUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGZnBGaHAtRlk2KC1GIzYoRmpuRmRvRmBxRmBzRmNzRjlGZXNGY3JGZXJGaHJGanJGY3AtRlk2KC1GIzYqRmpuRmRvRmpvRmRvRmBxRmBzRmNzRjlGXHRGY3JGZXJGaHJGanJGY3AtRiM2Ji1GaG42JS1GLDYlUSJhRidGL0YyRl1vRmFvRmRvLUZobjYlLUZUNiQtRmhuNiVGYnEtRiM2J0ZpcS1GIzYoRl5yRmRvLUZZNigtRiM2Ji1GaG42JS1GVDYkLUYjNiZGYHBGY3AtRiw2JVEoJiM5NTg7fGlyRidGL0YyRjlGOUZdb0Zhb0Zgc0Zjc0Y5LUYjNiYtRmhuNiUtRiw2JVEnJiM5NjM7RicvRjBGPUY5Rl1vRmFvRmBzRmNzRjlGY3JGZXJGaHJGanJGYHNGY3NGOUZgc0Zjc0Y5RmFvRjlGXW9GYW9GOUY5RjlGZG9GYnVGZG9GaXVGZG8tRlQ2JC1GIzYnRmlxLUYsNiVRI2N8aXJGJ0YvRjJGY3AtRiM2KEZdb0Zkby1GLDYlUSNkfGlyRidGL0YyRmRvRmV2RjlGOUY5RmRvLUZUNiQtRiM2Ji1GIzYoRl1vRmRvLUYjNigtRiw2JVElcmVhbEYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGZ29GaW8tRlQ2JC1GIzYmLUYsNiVRI3VTRidGL0YyRmBzRmNzRjlGOUZgc0Zjc0Y5RmRvLUYjNigtRiw2JVEkY29zRidGY3dGOUZbeS1GVDYkLUYjNiYtRiM2KC1GLDYlUSNifGlyRidGL0YyRmN0LUYjNiZGaHdGZG9GZXZGOUZjdC1GIzYmRl14RmRvRmN2RjlGOUZgc0Zjc0Y5RjlGYHNGY3NGOUY5RmNwLUYjNihGXW9GZG8tRiM2KC1GLDYlUSVpbWFnRidGL0YyRlt5Rl55RmBzRmNzRjlGZG8tRiM2KC1GLDYlUSRzaW5GJ0Zjd0Y5Rlt5Rmp5RmBzRmNzRjlGOUY5RjlGOUZjcC1GIzYqRmB1RmRvRmV1RmRvRmR3RmRvLUZUNiQtRiM2KC1GIzYoRl1vRmRvLUZobjYlRml6Rl1vRmFvRmRvLUYjNihGYFtsRlt5LUZUNiQtRiM2Ji1GIzYoLUYjNiZGXW9GZG9GYHpGOUZjdC1GIzYoRl1vRmRvRmh3RmRvRmV2RjlGY3QtRiM2KEZdb0Zkb0ZdeEZkb0ZjdkY5RjlGYHNGY3NGOUY5RmBzRmNzRjlGOUZjcC1GIzYoRl1vRmRvLUZobjYlRmZ4Rl1vRmFvRmRvRl1cbEY5RmN0LUYjNipGYHRGZG9GaXpGZG9GZnhGZG8tRiM2KEZneUZbeUZfXGxGYHNGY3NGOUY5RjlGOUY5RmN0LUZZNigtRiM2Li1GVDYkLUYjNipGWEZjdEZmdEZjcEZqdEZjcC1GIzYoLUZebzYkUSIzRidGOUZkb0ZgdUZkb0ZldUY5RjlGOUZkb0ZidUZkb0ZpdUZkb0ZldkZkby1GVDYkLUYjNiZGZHhGY3RGZ3pGOUY5RmBzRmNzRjlGXHdGY3JGZXJGaHJGanJGY3AtRlk2KC1GIzYsRmB1RmRvRmV1RmRvRmV2RmRvLUZUNiQtRiM2KC1GIzYoRl1vRmRvRl1dbEZkb0ZhXWxGOUZjcC1GIzYoRl1vRmRvRltcbEZkb0ZhXWxGOUZjdC1GIzYqRmB0RmRvRml6RmRvRmZ4RmRvRl1cbEY5RjlGOUZgc0Zjc0Y5Rlx3RmNyRmVyRmhyRmpyRjlGYHNGY3NGOQ==">LCoqLCwqKipJJmhfcGhpRzYiIiIjLCZJInRHRiciIiJJJXRhdTBHRichIiJGKEkqc2lnbWFfcGhpR0YnISIlLUkkZXhwRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YnNiMsJComRilGKEYuISIjI0YtRihGKEYrKihGJkYrRi5GOEYwRitGKyoqRiZGK0YpRihGLkYvRjBGK0YtKiZJImFHRidGKC1GMTYjLCQqJiwmRipGK0kkeGl8aXJHRidGLUYoSSZzaWdtYUdGJ0Y4RjlGKEYtRitGPUYrRj5GKywmSSNjfGlyR0YnRi0qJkkjZHxpckdGJ0YrRkJGK0Y4RissJiomLUklcmVhbEdGMjYjSSN1U0dGJ0YrLUkkY29zR0YyNiMsKEkjYnxpckdGJ0YrKiZGRkYrRkJGK0YrKiZGSEYrRkJGKEYrRitGKComLUklaW1hZ0dGJ0ZNRistSSRzaW5HRjJGUUYrRjhGK0YrKipGPUYoRj5GKEZFRissKComRldGKC1GWjYjLChGU0YoRlRGKEZVRihGK0YoKiZGS0YoRmhuRitGOCooRldGK0ZLRistRlBGaW5GKyIiJUYrRi0qLiwqRiVGK0Y6RitGO0YtRjwhIiRGK0Y9RitGPkYrRkJGKywmRkpGKEZWRihGK0ZERjhGKyosRj1GKEY+RihGQkYrLCgqJkZLRihGXW9GK0YoKiZGV0YoRl1vRitGOCooRldGK0ZLRitGaG5GK0Zeb0YrRkRGOEYt</Equation></Text-field>
</Output>
</Group>
<Group labelreference="L679" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JS1GLDYlUSNGMUYnRi9GMi8lK2V4ZWN1dGFibGVHUSZmYWxzZUYnL0YzUSdub3JtYWxGJ0ZALUkjbW9HRiQ2LVEiO0YnRkAvJSZmZW5jZUdGPy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJ0Y9RkA=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Iy1GLDYlUSNGMUYnRi9GMi9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSI7RidGPS8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJw==</Equation></Text-field>
</Input>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8"> \134left( {{\134it h\134_phi}}^{2} \134left( t-{\134it tau0} \134right) ^{2} \134left( {</Font></Text-field>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8">{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}} \134right) ^{2}{{\134it sigma\134_phi}}^{-4}+{\134it h\134_phi}
\134,{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-2}-{\134it h\134_phi}\134, \134left( t-{
\134it tau0} \134right) ^{2}{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-4}-3\134,{a
}^{2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{
{\134sigma}^{2}}}}} \134right) ^{2} \134right) {{\134rm e}^{-1/2\134,{\134frac { \134left(
t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134left( 2\134,{\134it real} \134left(
{\134it uS} \134right) \134cos \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134,
\134left( t-{\134it xi} \134right) ^{2} \134right) +2\134,{\134it imag} \134left( {\134it uS}
\134right) \134sin \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{
\134it xi} \134right) ^{2} \134right) \134right) -a \134left( {{\134rm e}^{-1/2\134,{
\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134right) ^{2}
\134left( 2\134, \134left( {\134it real} \134left( {\134it uS} \134right) \134right) ^{2}
\134cos \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{
\134it xi} \134right) ^{2} \134right) -2\134, \134left( {\134it imag} \134left( {\134it uS}
\134right) \134right) ^{2}\134cos \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi}
\134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2} \134right) +4\134,{\134it imag}
\134left( {\134it uS} \134right) {\134it real} \134left( {\134it uS} \134right) \134sin
\134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi
} \134right) ^{2} \134right) \134right) </Font></Text-field>
</Output>
</Group>
<Group labelreference="L652" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JS1GLDYlUSNGMkYnRi9GMi8lK2V4ZWN1dGFibGVHUSZmYWxzZUYnL0YzUSdub3JtYWxGJ0ZALUkjbW9HRiQ2LVEiO0YnRkAvJSZmZW5jZUdGPy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJ0Y9RkA=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Iy1GLDYlUSNGMkYnRi9GMi9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSI7RidGPS8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJw==</Equation></Text-field>
</Input>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8"> \134left( {{\134it h\134_phi}}^{2} \134left( t-{\134it tau0} \134right) ^{2} \134left( {</Font></Text-field>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8">{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}} \134right) ^{2}{{\134it sigma\134_phi}}^{-4}+{\134it h\134_phi}
\134,{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-2}-{\134it h\134_phi}\134, \134left( t-{
\134it tau0} \134right) ^{2}{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-4}-{a}^{
2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{
\134sigma}^{2}}}}} \134right) ^{2} \134right) a{{\134rm e}^{-1/2\134,{\134frac { \134left(
t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134left( 2\134,{\134it real} \134left(
{\134it uS} \134right) \134cos \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134,
\134left( t-{\134it xi} \134right) ^{2} \134right) -2\134,{\134it imag} \134left( {\134it uS}
\134right) \134sin \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{
\134it xi} \134right) ^{2} \134right) \134right) -{a}^{2} \134left( {{\134rm e}^{-1/2\134,
{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134right) ^{2}
\134left( 2\134, \134left( {\134it imag} \134left( {\134it uS} \134right) \134right) ^{2}
\134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{
\134it xi} \134right) ^{2} \134right) -2\134, \134left( {\134it real} \134left( {\134it uS}
\134right) \134right) ^{2}\134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi}
\134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2} \134right) +4\134,{\134it imag}
\134left( {\134it uS} \134right) {\134it real} \134left( {\134it uS} \134right) \134cos
\134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi
} \134right) ^{2} \134right) \134right) </Font></Text-field>
</Output>
</Group>
<Group labelreference="L659" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JS1GLDYlUSNGM0YnRi9GMi8lK2V4ZWN1dGFibGVHUSZmYWxzZUYnL0YzUSdub3JtYWxGJ0ZALUkjbW9HRiQ2LVEiO0YnRkAvJSZmZW5jZUdGPy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJ0Y9RkA=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Iy1GLDYlUSNGM0YnRi9GMi9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSI7RidGPS8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJw==</Equation></Text-field>
</Input>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8"> \134left( {{\134it h\134_phi}}^{2} \134left( t-{\134it tau0} \134right) ^{2} \134left( {</Font></Text-field>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8">{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}} \134right) ^{2}{{\134it sigma\134_phi}}^{-4}+{\134it h\134_phi}
\134,{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-2}-{\134it h\134_phi}\134, \134left( t-{
\134it tau0} \134right) ^{2}{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-4}-{a}^{
2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{
\134sigma}^{2}}}}} \134right) ^{2} \134right) a{{\134rm e}^{-1/2\134,{\134frac { \134left(
t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134left( t-{\134it xi} \134right)
\134left( 2\134,{\134it real} \134left( {\134it uS} \134right) \134cos \134left( b+c\134,
\134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi} \134right) ^{2}
\134right) -2\134,{\134it imag} \134left( {\134it uS} \134right) \134sin \134left( b+c\134,
\134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi} \134right) ^{2}
\134right) \134right) -{a}^{2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{
\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134right) ^{2} \134left( t-{\134it xi}
\134right) \134left( 2\134, \134left( {\134it imag} \134left( {\134it uS} \134right)
\134right) ^{2}\134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134,
\134left( t-{\134it xi} \134right) ^{2} \134right) -2\134, \134left( {\134it real} \134left(
{\134it uS} \134right) \134right) ^{2}\134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi
} \134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2} \134right) +4\134,{\134it imag
} \134left( {\134it uS} \134right) {\134it real} \134left( {\134it uS} \134right) \134cos
\134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi
} \134right) ^{2} \134right) \134right) </Font></Text-field>
</Output>
</Group>
<Group labelreference="L675" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JS1GLDYlUSNGNEYnRi9GMi8lK2V4ZWN1dGFibGVHUSZmYWxzZUYnL0YzUSdub3JtYWxGJ0ZALUkjbW9HRiQ2LVEiO0YnRkAvJSZmZW5jZUdGPy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJ0Y9RkA=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Iy1GLDYlUSNGNEYnRi9GMi9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSI7RidGPS8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJw==</Equation></Text-field>
</Input>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8"> \134left( {{\134it h\134_phi}}^{2} \134left( t-{\134it tau0} \134right) ^{2} \134left( {
{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}} \134right) ^{2}{{\134it sigma\134_phi}}^{-4}+{\134it h\134_phi}
\134,{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-2}-{\134it h\134_phi}\134, \134left( t-{
\134it tau0} \134right) ^{2}{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-4}-{a}^{
2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{
\134sigma}^{2}}}}} \134right) ^{2} \134right) a{{\134rm e}^{-1/2\134,{\134frac { \134left(
t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134left( t-{\134it xi} \134right) ^{
2} \134left( 2\134,{\134it real} \134left( {\134it uS} \134right) \134cos \134left( b+c\134,
\134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi} \134right) ^{2}
\134right) -2\134,{\134it imag} \134left( {\134it uS} \134right) \134sin \134left( b+c\134,
\134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi} \134right) ^{2}
\134right) \134right) -{a}^{2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{
\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134right) ^{2} \134left( t-{\134it xi}
\134right) ^{2} \134left( 2\134, \134left( {\134it imag} \134left( {\134it uS} \134right)
\134right) ^{2}\134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134,
\134left( t-{\134it xi} \134right) ^{2} \134right) -2\134, \134left( {\134it real} \134left(
{\134it uS} \134right) \134right) ^{2}\134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi
} \134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2} \134right) +4\134,{\134it imag</Font></Text-field>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8">} \134left( {\134it uS} \134right) {\134it real} \134left( {\134it uS} \134right) \134cos
\134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi
} \134right) ^{2} \134right) \134right) </Font></Text-field>
</Output>
</Group>
<Group labelreference="L663" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JS1GLDYlUSNGNUYnRi9GMi8lK2V4ZWN1dGFibGVHUSZmYWxzZUYnL0YzUSdub3JtYWxGJ0ZALUkjbW9HRiQ2LVEiO0YnRkAvJSZmZW5jZUdGPy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJ0Y9RkA=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Iy1GLDYlUSNGNUYnRi9GMi9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSI7RidGPS8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJw==</Equation></Text-field>
</Input>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8"> \134left( {{\134it h\134_phi}}^{2} \134left( t-{\134it tau0} \134right) ^{2} \134left( {</Font></Text-field>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8">{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}} \134right) ^{2}{{\134it sigma\134_phi}}^{-4}+{\134it h\134_phi}
\134,{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-2}-{\134it h\134_phi}\134, \134left( t-{
\134it tau0} \134right) ^{2}{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-4}-3\134,{a
}^{2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{
{\134sigma}^{2}}}}} \134right) ^{2} \134right) a{{\134rm e}^{-1/2\134,{\134frac {
\134left( t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134left( t-{\134it xi}
\134right) ^{2} \134left( 2\134,{\134it real} \134left( {\134it uS} \134right) \134cos
\134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi}
\134right) ^{2} \134right) +2\134,{\134it imag} \134left( {\134it uS} \134right) \134sin
\134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi}
\134right) ^{2} \134right) \134right) {\134sigma}^{-3}-{a}^{2} \134left( {{\134rm e}^{
-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}}
\134right) ^{2} \134left( t-{\134it xi} \134right) ^{2} \134left( 2\134, \134left( {\134it
real} \134left( {\134it uS} \134right) \134right) ^{2}\134cos \134left( 2\134,b+2\134,c\134,
\134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2}
\134right) -2\134, \134left( {\134it imag} \134left( {\134it uS} \134right) \134right) ^{2}
\134cos \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{
\134it xi} \134right) ^{2} \134right) +4\134,{\134it imag} \134left( {\134it uS} \134right) {
\134it real} \134left( {\134it uS} \134right) \134sin \134left( 2\134,b+2\134,c\134, \134left( t-{
\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2} \134right)
\134right) {\134sigma}^{-3}</Font></Text-field>
</Output>
</Group>
<Group labelreference="L1" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JC1GLDYlUSNGNkYnRi9GMi9GM1Enbm9ybWFsRidGPS1JI21vR0YkNi1RIjtGJ0Y9LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRkUvJSpzeW1tZXRyaWNHRkUvJShsYXJnZW9wR0ZFLyUubW92YWJsZWxpbWl0c0dGRS8lJ2FjY2VudEdGRS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUrZXhlY3V0YWJsZUdGRUY9">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEmbGF0ZXhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Iy1GLDYlUSNGNkYnRi9GMi9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSI7RidGPS8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJw==</Equation></Text-field>
</Input>
<Output>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8"> \134left( {{\134it h\134_phi}}^{2} \134left( t-{\134it tau0} \134right) ^{2} \134left( {</Font></Text-field>
<Text-field style="Line Printed Output" layout="Line Printed Output"><Font encoding="UTF-8">{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}} \134right) ^{2}{{\134it sigma\134_phi}}^{-4}+{\134it h\134_phi}
\134,{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0} \134right) ^{2}}{{{\134it
sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-2}-{\134it h\134_phi}\134, \134left( t-{
\134it tau0} \134right) ^{2}{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-4}-{a}^{
2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{
\134sigma}^{2}}}}} \134right) ^{2} \134right) a{{\134rm e}^{-1/2\134,{\134frac { \134left(
t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134left( -c-2\134,d\134, \134left( t-{
\134it xi} \134right) \134right) \134left( 2\134,{\134it real} \134left( {\134it uS}
\134right) \134cos \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{
\134it xi} \134right) ^{2} \134right) -2\134,{\134it imag} \134left( {\134it uS} \134right)
\134sin \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi}
\134right) ^{2} \134right) \134right) -{a}^{2} \134left( {{\134rm e}^{-1/2\134,{\134frac
{ \134left( t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134right) ^{2}
\134left( -c-2\134,d\134, \134left( t-{\134it xi} \134right) \134right) \134left( 2\134,
\134left( {\134it imag} \134left( {\134it uS} \134right) \134right) ^{2}\134sin \134left( 2
\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi}
\134right) ^{2} \134right) -2\134, \134left( {\134it real} \134left( {\134it uS} \134right)
\134right) ^{2}\134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134,
\134left( t-{\134it xi} \134right) ^{2} \134right) +4\134,{\134it imag} \134left( {\134it uS}
\134right) {\134it real} \134left( {\134it uS} \134right) \134cos \134left( 2\134,b+2\134,c\134,
\134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2}
\134right) \134right) + \134left( {{\134it h\134_phi}}^{2} \134left( t-{\134it tau0}
\134right) ^{2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}} \134right) ^{2}{{\134it sigma\134_phi
}}^{-4}+{\134it h\134_phi}\134,{{\134rm e}^{-1/2\134,{\134frac { \134left( t-{\134it tau0}
\134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it sigma\134_phi}}^{-2}-{\134it
h\134_phi}\134, \134left( t-{\134it tau0} \134right) ^{2}{{\134rm e}^{-1/2\134,{\134frac {
\134left( t-{\134it tau0} \134right) ^{2}}{{{\134it sigma\134_phi}}^{2}}}}}{{\134it
sigma\134_phi}}^{-4}-3\134,{a}^{2} \134left( {{\134rm e}^{-1/2\134,{\134frac { \134left( t-
{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}} \134right) ^{2} \134right) a{{\134rm e}
^{-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}}
\134left( t-{\134it xi} \134right) \134left( 2\134,{\134it real} \134left( {\134it uS}
\134right) \134cos \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{
\134it xi} \134right) ^{2} \134right) +2\134,{\134it imag} \134left( {\134it uS} \134right)
\134sin \134left( b+c\134, \134left( t-{\134it xi} \134right) +d\134, \134left( t-{\134it xi}
\134right) ^{2} \134right) \134right) {\134sigma}^{-2}-{a}^{2} \134left( {{\134rm e}^{
-1/2\134,{\134frac { \134left( t-{\134it xi} \134right) ^{2}}{{\134sigma}^{2}}}}}
\134right) ^{2} \134left( t-{\134it xi} \134right) \134left( 2\134, \134left( {\134it real}
\134left( {\134it uS} \134right) \134right) ^{2}\134cos \134left( 2\134,b+2\134,c\134, \134left( t
-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2} \134right) -2\134,
\134left( {\134it imag} \134left( {\134it uS} \134right) \134right) ^{2}\134cos \134left( 2
\134,b+2\134,c\134, \134left( t-{\134it xi} \134right) +2\134,d\134, \134left( t-{\134it xi}
\134right) ^{2} \134right) +4\134,{\134it imag} \134left( {\134it uS} \134right) {\134it real
} \134left( {\134it uS} \134right) \134sin \134left( 2\134,b+2\134,c\134, \134left( t-{\134it xi}
\134right) +2\134,d\134, \134left( t-{\134it xi} \134right) ^{2} \134right) \134right) {
\134sigma}^{-2}</Font></Text-field>
</Output>
</Group>
<Group labelreference="L702" drawlabel="true">
<Input>
<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field>
</Input>
</Group>
</Worksheet>