25
25
class DenseClassifier (ModelFitMixin , DenseModelMixin , MLClassifierBase ):
26
26
27
27
processes = [
28
- #"sg ",
29
- "ggHH_kl_5_kt_1_dl_hbbhww " ,
30
- # "tt",
31
- # "st",
28
+ "ggHH_kl_1_kt_1_sl_hbbhww " ,
29
+ "qqHH_CV_1_C2V_1_kl_1_sl_hbbhww " ,
30
+ "tt" ,
31
+ "st" ,
32
32
"v_lep" ,
33
- "t_bkg" ,
34
- #"w_lnu",
35
- #"dy_lep",
33
+ # "w_lnu",
34
+ # "dy_lep",
36
35
]
37
36
38
37
ml_process_weights = {
39
- "ggHH_kl_0_kt_1_dl_hbbhww" : 1 ,
40
- "ggHH_kl_1_kt_1_dl_hbbhww" : 1 ,
41
- "ggHH_kl_5_kt_1_dl_hbbhww" : 1 ,
42
- "sg" : 1 ,
43
- "tt" : 1 ,
44
- "st" : 1 ,
45
- "v_lep" : 1 ,
46
- "tt_bkg" : 1 ,
38
+ "ggHH_kl_1_kt_1_sl_hbbhww" : 1 ,
39
+ "qqHH_CV_1_C2V_1_kl_1_sl_hbbhww" : 1 ,
40
+ "tt" : 2 ,
41
+ "st" : 2 ,
42
+ "v_lep" : 2 ,
47
43
"w_lnu" : 2 ,
48
- "dy_lep" : 1 ,
44
+ "dy_lep" : 2 ,
49
45
}
50
46
51
47
dataset_names = {
52
- #"ggHH_kl_0_kt_1_dl_hbbhww_powheg",
53
- #"ggHH_kl_1_kt_1_dl_hbbhww_powheg",
54
- "ggHH_kl_5_kt_1_dl_hbbhww_powheg" ,
48
+ "ggHH_kl_1_kt_1_sl_hbbhww_powheg" ,
49
+ "qqHH_CV_1_C2V_1_kl_1_sl_hbbhww_madgraph" ,
55
50
# TTbar
56
51
"tt_sl_powheg" ,
57
52
"tt_dl_powheg" ,
58
53
"tt_fh_powheg" ,
59
54
# SingleTop
60
55
"st_tchannel_t_powheg" ,
61
- # "st_tchannel_tbar_powheg", #problem in previous task for production
56
+ "st_tchannel_tbar_powheg" ,
62
57
"st_twchannel_t_powheg" ,
63
58
"st_twchannel_tbar_powheg" ,
64
- # "st_schannel_lep_amcatnlo", #problem with normalizatino weights..
59
+ "st_schannel_lep_amcatnlo" ,
65
60
# "st_schannel_had_amcatnlo",
66
- # WJets commented out because no events avaible and hence no nomralization weights
61
+ # WJets
67
62
"w_lnu_ht70To100_madgraph" ,
68
63
"w_lnu_ht100To200_madgraph" ,
69
64
"w_lnu_ht200To400_madgraph" ,
@@ -84,41 +79,29 @@ class DenseClassifier(ModelFitMixin, DenseModelMixin, MLClassifierBase):
84
79
}
85
80
86
81
input_features = [
87
- "mli_mll" , "mli_min_dr_llbb" , "mli_dr_ll" , "mli_bb_pt" ,
88
82
"mli_ht" , "mli_n_jet" , "mli_n_deepjet" ,
89
- "mli_deepjetsum" , "mli_b_deepjetsum" , "mli_l_deepjetsum" ,
83
+ # "mli_deepjetsum", "mli_b_deepjetsum", "mli_l_deepjetsum",
90
84
"mli_dr_bb" , "mli_dphi_bb" , "mli_mbb" , "mli_mindr_lb" ,
91
- "mli_dphi_ll" , "mli_dphi_bb_nu" , "mli_dphi_bb_llMET" , "mli_mllMET" ,
92
- "mli_mbbllMET" , "mli_dr_bb_llMET" , "mli_ll_pt" , "mli_met_pt" ,
93
- #"mli_met_eta", "meli_met_pt",
94
- #"mli_dr_jj", "mli_dphi_jj", "mli_mjj", "mli_mindr_lj",
95
- #"mli_dphi_lnu", "mli_mlnu", "mli_mjjlnu", "mli_mjjl", "mli_dphi_bb_jjlnu", "mli_dr_bb_jjlnu",
96
- #"mli_dphi_bb_jjl", "mli_dr_bb_jjl", "mli_dphi_bb_nu", "mli_dphi_jj_nu", "mli_dr_bb_l", "mli_dr_jj_l",
97
- #"mli_mbbjjlnu", "mli_mbbjjl", "mli_s_min",
85
+ "mli_dr_jj" , "mli_dphi_jj" , "mli_mjj" , "mli_mindr_lj" ,
86
+ "mli_dphi_lnu" , "mli_mlnu" , "mli_mjjlnu" , "mli_mjjl" , "mli_dphi_bb_jjlnu" , "mli_dr_bb_jjlnu" ,
87
+ "mli_dphi_bb_jjl" , "mli_dr_bb_jjl" , "mli_dphi_bb_nu" , "mli_dphi_jj_nu" , "mli_dr_bb_l" , "mli_dr_jj_l" ,
88
+ "mli_mbbjjlnu" , "mli_mbbjjl" , "mli_s_min" ,
98
89
] + [
99
90
f"mli_{ obj } _{ var } "
100
- for obj in ["b1" , "b2" , "lep" , "lep2 " ]
91
+ for obj in ["b1" , "b2" , "j1" , "j2" , " lep" , "met " ]
101
92
for var in ["pt" , "eta" ]
102
- ]
103
- """
104
- + [
93
+ ] + [
105
94
f"mli_{ obj } _{ var } "
106
95
for obj in ["fj" ]
107
96
for var in ["pt" , "eta" , "phi" , "mass" , "msoftdrop" , "deepTagMD_HbbvsQCD" ]
108
97
]
109
- """
110
98
111
99
store_name = "inputs_v1"
112
100
113
- folds = 3
114
- layers = (164 , 164 , 164 )
115
- activation = "relu"
116
- learningrate = 0.0005
117
- batchsize = 8000 #2 ** 12
118
- epochs = 150
119
- dropout = 0.50
120
- negative_weights = "abs"
101
+ folds = 5
121
102
validation_fraction = 0.20
103
+ learningrate = 0.00050
104
+ negative_weights = "handle"
122
105
123
106
# overwriting DenseModelMixin parameters
124
107
activation = "relu"
@@ -204,21 +187,19 @@ def training_selector(self, config_inst: od.Config, requested_selector: str) ->
204
187
205
188
def training_producers (self , config_inst : od .Config , requested_producers : Sequence [str ]) -> list [str ]:
206
189
# fix MLTraining Phase Space
207
- return ["dl_ml_inputs" ] if self . config_ist . has_tag ( "is_sl" ) else [ " " ]
190
+ return ["ml_inputs " ]
208
191
209
192
210
193
# copies of the default DenseClassifier for testing hard-coded changes
211
194
for i in range (10 ):
212
195
dense_copy = DenseClassifier .derive (f"dense_{ i } " )
213
196
214
197
cls_dict_test = {
215
- "folds" : 5 ,
216
- "epochs" : 100 ,
217
- "processes" : ["ggHH_kl_5_kt_1_dl_hbbhww" , "v_lep" , "t_bkg" ],
198
+ "epochs" : 4 ,
199
+ "processes" : ["ggHH_kl_1_kt_1_sl_hbbhww" , "qqHH_CV_1_C2V_1_kl_1_sl_hbbhww" , "tt" , "st" , "v_lep" ],
218
200
"dataset_names" : {
219
- "ggHH_kl_5_kt_1_dl_hbbhww_powheg" , # "tt_dl_powheg",
220
- # "st_tchannel_t_powheg", #"w_lnu_ht400To600_madgraph",
221
- "dy_lep_m50_ht400to600_madgraph" ,
201
+ "ggHH_kl_1_kt_1_sl_hbbhww_powheg" , "qqHH_CV_1_C2V_1_kl_1_sl_hbbhww_madgraph" , "tt_dl_powheg" ,
202
+ "st_tchannel_t_powheg" , "w_lnu_ht400To600_madgraph" ,
222
203
},
223
204
}
224
205
0 commit comments