-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface1.py
52 lines (34 loc) · 1.45 KB
/
face1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import cv2
import numpy as np
face_cascade = cv2.CascadeClassifier('C:\\Users\\acer\\Anaconda3\\Library\\etc\\haarcascades\\haarcascade_frontalface_default.xml')
# capture frames from a camera
cap = cv2.VideoCapture(0)
# loop runs if capturing has been initialized.
while 1:
# reads frames from a camera
ret, img = cap.read()
# convert to gray scale of each frames
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detects faces of different sizes in the input image
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
#print (type(faces))
if len(faces) == 0:
print ("No of face :" + str(len(faces)))
else:
print (faces)
#print (faces.shape)
print ("Number of faces detected: " + str(faces.shape[0]))
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (165, 252, 83), 2)
cv2.rectangle(img, ((0,img.shape[0] -25)),(270, img.shape[0]), (255,255,255), -1)
cv2.putText(img, "Number of faces detected: " + str(faces.shape[0]), (0,img.shape[0] -10), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0,0,0), 1)
# Display an image in a window
cv2.imshow('img',img)
# Wait for Esc key to stop
k = cv2.waitKey(300) & 0xff
if k == 27:
break
# Close the window
cap.release()
# De-allocate any associated memory usage
cv2.destroyAllWindows()