forked from Sewhitebook/TRIPP-Pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Process.py
81 lines (68 loc) · 3.5 KB
/
Process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import time
import sep
import glob
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import astroalign as aa
from astropy.io import fits
from astropy.coordinates import SkyCoord
from photutils import centroids, CircularAperture
from photutils.aperture import aperture_photometry
from astropy.wcs.utils import skycoord_to_pixel, pixel_to_skycoord
from astropy.coordinates import ICRS, FK5
from regions import CirclePixelRegion, PixCoord
def mask(img, srcs, T): # masking function. Takes science image and list of sources.
b = sep.Background(img)
dat = img-b.back() #background subtraction for app_phot
for i, s in enumerate(srcs):
x_cen = s['x']
y_cen = s['y']
radius = ((s['xmax'] - s['xmin'])/2)
center_2 = PixCoord(x_cen, y_cen)
circle = CirclePixelRegion(center_2, radius)
mask = circle.to_mask() # this and the previous line make a "circle" array with ones
app2 = CircularAperture([x_cen, y_cen], radius)
app_phot2 = aperture_photometry(dat, app2) # aperture sum
blend_val = float(app_phot2['aperture_sum'][0] / (np.pi * radius ** 2))# averaging the sum value over the area of the source
if T == True:
temp_blends.append((x_cen, y_cen, blend_val))
d = mask.bbox.extent
#print(d)
if d[0] < 0 or d[1] < 0 or d[2] < 0 or d[3] < 0:
continue
l1, l2, l3, l4 = int(d[0]-.5), int(d[1]-.5), int(d[2]-.5), int(d[3]-.5)
try:
fill = dat[l3:l4, l1:l2] * (np.ones(mask.data.shape) - np.array(mask.data)) # used to fill noise data back in (esentially making the mask a circle again)
dat[l3:l4, l1:l2] = mask.data*blend_val + fill #this just outright sets the values for each source to the blended value. note that the index slices are in y, x format. blame python
except ValueError:
continue
#print(i)
return dat
#files = sorted(glob.glob("C:/Users/lucaa/Documents/PipelineLite/M31S25/*.fz")) #file path for input data --> make sys.argv
files = sorted(glob.glob("C:/Users/lucaa/Documents/PipelineLite/Small/*.fz")) #file path for input data --> make sys.argv
outstr = "C:/Users/lucaa/Documents/PipelineLite/Residuals/{}.fz"
print(len(files))
hdus = [fits.open(f) for f in files]
data = [h[1].data for h in hdus]
aligned = [aa.register(i, data[0])[0] for i in data[0:]]
template = np.median(aligned, axis = 0)
bkg0 = sep.Background(template)
extracted0 = sep.extract(template-bkg0.back(), bkg0.globalrms*3, minarea =10, segmentation_map=False)
masked = [mask(img, extracted0, False) for img in aligned]
blend_template = mask(template, extracted0, False) #masks template --> look into true false thing, there was a reason for it at some point.
residuals = [np.subtract(i, blend_template) for i in masked]
counter = 0
for pics in residuals:
bkg = sep.Background(pics)
extracted = sep.extract(pics - bkg.back(), bkg.globalrms * 3, minarea=10, segmentation_map=False)
header = fits.Header([fits.Card("History", "Extracted by sep")])
hdul = fits.HDUList([fits.PrimaryHDU(pics), fits.BinTableHDU(data=extracted, header=header, name="SEP", ver=None)])
hdul.writeto(outstr.format(counter), overwrite=True)
plt.scatter(extracted['x'], extracted['y'], facecolors = 'none', edgecolors = 'r')
counter += 1
plt.imshow(template, norm = LogNorm(vmin = 1, vmax = 70), origin = 'lower')
plt.show()
#plt.imshow(template, cmap="viridis", norm = LogNorm(vmin = 67, vmax = 212))
#plt.show()