-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathplot_confusion_matrix.py
90 lines (76 loc) · 2.84 KB
/
plot_confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
================
Confusion matrix
================
"""
# print(__doc__)
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.externals import joblib
import path
import svm
import utils
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
print(cm)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
if __name__ == '__main__':
DataDir = path.DataDir
train_utterance_file = DataDir.train_utterance
test_utterance_file = DataDir.test_utterance
train_data_path = DataDir.train_path
svm_model_file = DataDir.svm
test_data_path = DataDir.val_path
data_root = DataDir.DataRoot
confusion_matrix_file = DataDir.confusion_matrix
class_names = ['anger','boredom','disgust','fear','happiness','sadness','neutral']
cnf_matrix = np.zeros((7,7))
#for i in range(0,len(DataDir.val_speaker)):
for i in [0,1,5,6,7]:#range(0,10):
y_true = utils.load_labels(test_data_path[i],data_root)
y_pred = svm.get_pred_labes(svm_model_file[i],test_utterance_file[i])
print(y_true)
print(y_pred)
# Compute confusion matrix
cnf_matrix += confusion_matrix(y_true, y_pred)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
#plt.figure()
#plot_confusion_matrix(cnf_matrix, classes=class_names,
# title='Confusion matrix, without normalization')
#plt.savefig('xx2.png')
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.savefig(confusion_matrix_file[i])
plt.show()