-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcustom_networks_hyp.py
287 lines (268 loc) · 11.9 KB
/
custom_networks_hyp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Copyright 2022 Twitter, Inc.
# SPDX-License-Identifier: Apache-2.0
import torch
from torch import nn
from torch.nn.utils.parametrizations import spectral_norm
import utils_hyp
from utils import to_numpy
from custom_networks import ImpalaResidualStack
from utils_hyp import PoincarePlaneDistance, ClipNorm, TemperatureScaling, weight_init_hyp, final_weight_init_hyp
def get_cont_mean_norm(input):
input_shape = input.size()
rs_input = input.view(input_shape[0], -1)
return torch.norm(rs_input, p=2, dim=-1, keepdim=True).mean()
def apply_sn(m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
return spectral_norm(m)
else:
return m
def apply_sn_only_conv(m):
if isinstance(m, nn.Conv2d):
return spectral_norm(m)
else:
return m
def apply_sn_all_convs(modules):
for module in modules:
module.apply(apply_sn_only_conv)
def register_grad_hook(metric, layer, layer_name):
grad_input_norm_name = 'grad_output_norm_{}'.format(layer_name)
grad_weight_norm_name = 'grad_weight_norm_{}'.format(layer_name)
metric.add(grad_input_norm_name)
dict = {grad_input_norm_name: 1}
metric.update(**dict)
def output_gradient_hook(model, input_grad, output_grad):
grad_input_norm = get_cont_mean_norm(output_grad[0])
dict = {grad_input_norm_name: to_numpy(grad_input_norm)}
metric.update(**dict)
layer.register_backward_hook(output_gradient_hook)
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
metric.add(grad_weight_norm_name)
dict = {grad_weight_norm_name: 1}
metric.update(**dict)
def kernel_gradient_hook(grad):
grad_norm = get_cont_mean_norm(grad)
dict = {grad_weight_norm_name: to_numpy(grad_norm)}
metric.update(**dict)
return grad
layer.weight.register_hook(kernel_gradient_hook)
def register_all_layers_grads(modules, metric):
count_conv = 0
count_lin = 0
count_stack = 0
for m in modules:
if isinstance(m, nn.Conv2d):
name = 'conv{}'.format(count_conv)
register_grad_hook(metric=metric, layer=m, layer_name=name)
count_conv += 1
elif isinstance(m, nn.Linear):
name = 'linear{}'.format(count_lin)
register_grad_hook(metric=metric, layer=m, layer_name=name)
count_lin += 1
elif isinstance(m, ImpalaResidualStack):
name = 'stack{}'.format(count_stack)
register_grad_hook(metric=metric, layer=m, layer_name=name)
count_stack += 1
elif isinstance(m, nn.Flatten):
name = 'flatten'
register_grad_hook(metric=metric, layer=m, layer_name=name)
else:
pass
def apply_sn_until_instance(modules, layer_instance):
reached_instance = False
application_modules = []
for module in modules:
if isinstance(module, layer_instance):
reached_instance = True
elif not reached_instance:
application_modules.append(module)
for module in application_modules:
module.apply(apply_sn)
def get_nonlinear_layer(layer_name):
if layer_name == 'tanh':
return nn.Tanh()
elif layer_name == 'relu':
return nn.ReLU()
else:
raise NotImplementedError
def make_impala_modules_hyp(obs_dims, n_actions, max_euclidean_norm,
channels=[16, 32, 32],
hidden_units=256,
shared_conv_trunk=True,
shared_fc_head=True,
hyperbolic_critic=True,
init=weight_init_hyp,
final_init=final_weight_init_hyp,
pre_hyp_final_init=False,
hyperbolic_layer_index=-1,
pre_hyperbolic_relu=True,
post_hyperbolic_relu=True,
temperature_scaling=False,
pre_hyperbolic_sn=False,
dimensions_per_space=None,
critic_hidden_units=None,
magnitude_warmup=None,
auxiliary_dims=None,
**hyperbolic_layer_kwargs):
if critic_hidden_units:
if critic_hidden_units != hidden_units:
assert shared_fc_head == False
else:
critic_hidden_units = hidden_units
if isinstance(final_init, str):
if final_init == 'normal':
final_init = utils_hyp.final_weight_init_hyp
elif final_init == 'small':
final_init = utils_hyp.final_weight_init_hyp_small
else:
raise NotImplementedError
in_channels, w, h = obs_dims[-3:]
number_of_stacks = len(channels)
flattened_dims = (w * h) // (4 ** number_of_stacks) * channels[-1]
if not post_hyperbolic_relu:
raise NotImplementedError
if isinstance(hidden_units, int):
hidden_units = [hidden_units]
if isinstance(critic_hidden_units, int):
critic_hidden_units = [critic_hidden_units]
if temperature_scaling:
actor_output = n_actions + 1
else:
actor_output = n_actions
if auxiliary_dims:
assert isinstance(auxiliary_dims, int)
assert auxiliary_dims > 0
actor_output = actor_output + auxiliary_dims
num_linear_layers = len(hidden_units) + 1
hyperbolic_layer_index = hyperbolic_layer_index % num_linear_layers
shared_modules = []
actor_modules = []
critic_modules = []
if shared_conv_trunk:
for stack_channels in channels:
shared_modules.append(ImpalaResidualStack(in_channels,
stack_channels))
in_channels = stack_channels
shared_modules += [nn.Flatten(), ]
for m in shared_modules:
init(m)
else:
assert not shared_fc_head
for stack_channels in channels:
actor_modules.append(ImpalaResidualStack(in_channels,
stack_channels))
critic_modules.append(ImpalaResidualStack(in_channels,
stack_channels))
in_channels = stack_channels
actor_modules += [nn.Flatten(), ]
critic_modules += [nn.Flatten(), ]
projection = ClipNorm(max_norm=max_euclidean_norm,
dimensions_per_space=dimensions_per_space)
if shared_fc_head:
assert shared_conv_trunk
assert hyperbolic_critic
in_features = flattened_dims
units_list = hidden_units + [actor_output + 1]
for i, units in enumerate(units_list):
if i == hyperbolic_layer_index:
distance_layer = PoincarePlaneDistance(in_features=in_features,
num_planes=units,
dimensions_per_space=dimensions_per_space,
**hyperbolic_layer_kwargs)
if pre_hyperbolic_relu:
if isinstance(pre_hyperbolic_relu, str):
shared_modules.append(get_nonlinear_layer(pre_hyperbolic_relu))
else:
shared_modules.append(nn.ReLU())
shared_modules += [projection, distance_layer]
if magnitude_warmup is not None:
shared_modules.insert(-1, magnitude_warmup)
else:
shared_modules += [nn.ReLU(),
nn.Linear(in_features=in_features,
out_features=units), ]
in_features = units
last_linear = None
reached_hyp = False
for m in shared_modules[:-1]:
if isinstance(m, nn.Linear):
last_linear = m
elif isinstance(m, PoincarePlaneDistance):
reached_hyp = False
init(m)
if not reached_hyp:
assert isinstance(shared_modules[-1], PoincarePlaneDistance)
final_init(shared_modules[-1])
if pre_hyp_final_init:
assert last_linear is not None
final_init(last_linear)
if temperature_scaling:
shared_modules.append(TemperatureScaling(logits_number=n_actions))
else:
in_features = flattened_dims
critic_in_features = flattened_dims
units_list = hidden_units + [actor_output]
critic_units_list = critic_hidden_units + [1]
for i, units in enumerate(units_list):
if i == hyperbolic_layer_index:
actor_distance_layer = PoincarePlaneDistance(in_features=in_features,
num_planes=units,
dimensions_per_space=dimensions_per_space,
**hyperbolic_layer_kwargs)
if pre_hyperbolic_relu:
if isinstance(pre_hyperbolic_relu, str):
actor_modules.append(get_nonlinear_layer(pre_hyperbolic_relu))
critic_modules.append(get_nonlinear_layer(pre_hyperbolic_relu))
else:
actor_modules.append(nn.ReLU())
critic_modules.append(nn.ReLU())
actor_modules += [projection, actor_distance_layer]
if magnitude_warmup is not None:
actor_modules.insert(-1, magnitude_warmup)
if hyperbolic_critic:
critic_distance_layer = PoincarePlaneDistance(in_features=critic_in_features,
num_planes=critic_units_list[i],
dimensions_per_space=dimensions_per_space,
**hyperbolic_layer_kwargs)
critic_modules += [projection, critic_distance_layer]
if magnitude_warmup is not None:
critic_modules.insert(-1, magnitude_warmup)
else:
critic_modules += [nn.ReLU(), nn.Linear(in_features=critic_in_features, out_features=critic_units_list[i])]
else:
actor_modules += [nn.ReLU(),
nn.Linear(in_features=in_features,
out_features=units), ]
critic_modules += [nn.ReLU(),
nn.Linear(in_features=critic_in_features,
out_features=critic_units_list[i])]
critic_in_features = critic_units_list[i]
in_features = units
for m in shared_modules:
init(m)
for m in actor_modules[:-1]:
init(m)
for m in critic_modules[:-1]:
init(m)
final_init(actor_modules[-1])
final_init(critic_modules[-1])
if temperature_scaling:
actor_modules.append(TemperatureScaling(logits_number=n_actions))
if isinstance(pre_hyperbolic_sn, str):
if pre_hyperbolic_sn == 'conv':
apply_sn_all_convs(shared_modules)
apply_sn_all_convs(actor_modules)
if hyperbolic_critic:
apply_sn_all_convs(critic_modules)
else:
raise NotImplementedError
elif pre_hyperbolic_sn:
apply_sn_until_instance(shared_modules, PoincarePlaneDistance)
apply_sn_until_instance(actor_modules, PoincarePlaneDistance)
if hyperbolic_critic:
apply_sn_until_instance(critic_modules, PoincarePlaneDistance)
modules = {}
modules['shared_modules'] = shared_modules
modules['actor_modules'] = actor_modules
modules['critic_modules'] = critic_modules
modules['auxiliary_dims'] = auxiliary_dims
return modules