forked from RandyGaul/ImpulseEngine
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Manifold.cpp
136 lines (110 loc) · 4.09 KB
/
Manifold.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
Copyright (c) 2013 Randy Gaul http://RandyGaul.net
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "Precompiled.h"
void Manifold::Solve( void )
{
Dispatch[A->shape->GetType( )][B->shape->GetType( )]( this, A, B );
}
void Manifold::Initialize( void )
{
// Calculate average restitution
e = std::min( A->restitution, B->restitution );
// Calculate static and dynamic friction
sf = std::sqrt( A->staticFriction * A->staticFriction );
df = std::sqrt( A->dynamicFriction * A->dynamicFriction );
for(uint32 i = 0; i < contact_count; ++i)
{
// Calculate radii from COM to contact
Vec2 ra = contacts[i] - A->position;
Vec2 rb = contacts[i] - B->position;
Vec2 rv = B->velocity + Cross( B->angularVelocity, rb ) -
A->velocity - Cross( A->angularVelocity, ra );
// Determine if we should perform a resting collision or not
// The idea is if the only thing moving this object is gravity,
// then the collision should be performed without any restitution
if(rv.LenSqr( ) < (dt * gravity).LenSqr( ) + EPSILON)
e = 0.0f;
}
}
void Manifold::ApplyImpulse( void )
{
// Early out and positional correct if both objects have infinite mass
if(Equal( A->im + B->im, 0 ))
{
InfiniteMassCorrection( );
return;
}
for(uint32 i = 0; i < contact_count; ++i)
{
// Calculate radii from COM to contact
Vec2 ra = contacts[i] - A->position;
Vec2 rb = contacts[i] - B->position;
// Relative velocity
Vec2 rv = B->velocity + Cross( B->angularVelocity, rb ) -
A->velocity - Cross( A->angularVelocity, ra );
// Relative velocity along the normal
real contactVel = Dot( rv, normal );
// Do not resolve if velocities are separating
if(contactVel > 0)
return;
real raCrossN = Cross( ra, normal );
real rbCrossN = Cross( rb, normal );
real invMassSum = A->im + B->im + Sqr( raCrossN ) * A->iI + Sqr( rbCrossN ) * B->iI;
// Calculate impulse scalar
real j = -(1.0f + e) * contactVel;
j /= invMassSum;
j /= (real)contact_count;
// Apply impulse
Vec2 impulse = normal * j;
A->ApplyImpulse( -impulse, ra );
B->ApplyImpulse( impulse, rb );
// Friction impulse
rv = B->velocity + Cross( B->angularVelocity, rb ) -
A->velocity - Cross( A->angularVelocity, ra );
Vec2 t = rv - (normal * Dot( rv, normal ));
t.Normalize( );
// j tangent magnitude
real jt = -Dot( rv, t );
jt /= invMassSum;
jt /= (real)contact_count;
// Don't apply tiny friction impulses
if(Equal( jt, 0.0f ))
return;
// Coulumb's law
Vec2 tangentImpulse;
if(std::abs( jt ) < j * sf)
tangentImpulse = t * jt;
else
tangentImpulse = t * -j * df;
// Apply friction impulse
A->ApplyImpulse( -tangentImpulse, ra );
B->ApplyImpulse( tangentImpulse, rb );
}
}
void Manifold::PositionalCorrection( void )
{
const real k_slop = 0.05f; // Penetration allowance
const real percent = 0.4f; // Penetration percentage to correct
Vec2 correction = (std::max( penetration - k_slop, 0.0f ) / (A->im + B->im)) * normal * percent;
A->position -= correction * A->im;
B->position += correction * B->im;
}
void Manifold::InfiniteMassCorrection( void )
{
A->velocity.Set( 0, 0 );
B->velocity.Set( 0, 0 );
}