forked from LTH14/mar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mar.py
353 lines (286 loc) · 14 KB
/
mar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from functools import partial
import numpy as np
from tqdm import tqdm
import scipy.stats as stats
import math
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from timm.models.vision_transformer import Block
from models.diffloss import DiffLoss
def mask_by_order(mask_len, order, bsz, seq_len):
masking = torch.zeros(bsz, seq_len).cuda()
masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len).cuda()).bool()
return masking
class MAR(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=256, vae_stride=16, patch_size=1,
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm,
vae_embed_dim=16,
mask_ratio_min=0.7,
label_drop_prob=0.1,
class_num=1000,
attn_dropout=0.1,
proj_dropout=0.1,
buffer_size=64,
diffloss_d=3,
diffloss_w=1024,
num_sampling_steps='100',
diffusion_batch_mul=4,
grad_checkpointing=False,
):
super().__init__()
# --------------------------------------------------------------------------
# VAE and patchify specifics
self.vae_embed_dim = vae_embed_dim
self.img_size = img_size
self.vae_stride = vae_stride
self.patch_size = patch_size
self.seq_h = self.seq_w = img_size // vae_stride // patch_size
self.seq_len = self.seq_h * self.seq_w
self.token_embed_dim = vae_embed_dim * patch_size**2
self.grad_checkpointing = grad_checkpointing
# --------------------------------------------------------------------------
# Class Embedding
self.num_classes = class_num
self.class_emb = nn.Embedding(1000, encoder_embed_dim)
self.label_drop_prob = label_drop_prob
# Fake class embedding for CFG's unconditional generation
self.fake_latent = nn.Parameter(torch.zeros(1, encoder_embed_dim))
# --------------------------------------------------------------------------
# MAR variant masking ratio, a left-half truncated Gaussian centered at 100% masking ratio with std 0.25
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25)
# --------------------------------------------------------------------------
# MAR encoder specifics
self.z_proj = nn.Linear(self.token_embed_dim, encoder_embed_dim, bias=True)
self.z_proj_ln = nn.LayerNorm(encoder_embed_dim, eps=1e-6)
self.buffer_size = buffer_size
self.encoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, encoder_embed_dim))
self.encoder_blocks = nn.ModuleList([
Block(encoder_embed_dim, encoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(encoder_depth)])
self.encoder_norm = norm_layer(encoder_embed_dim)
# --------------------------------------------------------------------------
# MAR decoder specifics
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, decoder_embed_dim))
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len, decoder_embed_dim))
self.initialize_weights()
# --------------------------------------------------------------------------
# Diffusion Loss
self.diffloss = DiffLoss(
target_channels=self.token_embed_dim,
z_channels=decoder_embed_dim,
width=diffloss_w,
depth=diffloss_d,
num_sampling_steps=num_sampling_steps,
grad_checkpointing=grad_checkpointing
)
self.diffusion_batch_mul = diffusion_batch_mul
def initialize_weights(self):
# parameters
torch.nn.init.normal_(self.class_emb.weight, std=.02)
torch.nn.init.normal_(self.fake_latent, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
torch.nn.init.normal_(self.encoder_pos_embed_learned, std=.02)
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
def patchify(self, x):
bsz, c, h, w = x.shape
p = self.patch_size
h_, w_ = h // p, w // p
x = x.reshape(bsz, c, h_, p, w_, p)
x = torch.einsum('nchpwq->nhwcpq', x)
x = x.reshape(bsz, h_ * w_, c * p ** 2)
return x # [n, l, d]
def unpatchify(self, x):
bsz = x.shape[0]
p = self.patch_size
c = self.vae_embed_dim
h_, w_ = self.seq_h, self.seq_w
x = x.reshape(bsz, h_, w_, c, p, p)
x = torch.einsum('nhwcpq->nchpwq', x)
x = x.reshape(bsz, c, h_ * p, w_ * p)
return x # [n, c, h, w]
def sample_orders(self, bsz):
# generate a batch of random generation orders
orders = []
for _ in range(bsz):
order = np.array(list(range(self.seq_len)))
np.random.shuffle(order)
orders.append(order)
orders = torch.Tensor(np.array(orders)).cuda().long()
return orders
def random_masking(self, x, orders):
# generate token mask
bsz, seq_len, embed_dim = x.shape
mask_rate = self.mask_ratio_generator.rvs(1)[0]
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
mask = torch.zeros(bsz, seq_len, device=x.device)
mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens],
src=torch.ones(bsz, seq_len, device=x.device))
return mask
def forward_mae_encoder(self, x, mask, class_embedding):
x = self.z_proj(x)
bsz, seq_len, embed_dim = x.shape
# concat buffer
x = torch.cat([torch.zeros(bsz, self.buffer_size, embed_dim, device=x.device), x], dim=1)
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)
# random drop class embedding during training
if self.training:
drop_latent_mask = torch.rand(bsz) < self.label_drop_prob
drop_latent_mask = drop_latent_mask.unsqueeze(-1).cuda().to(x.dtype)
class_embedding = drop_latent_mask * self.fake_latent + (1 - drop_latent_mask) * class_embedding
x[:, :self.buffer_size] = class_embedding.unsqueeze(1)
# encoder position embedding
x = x + self.encoder_pos_embed_learned
x = self.z_proj_ln(x)
# dropping
x = x[(1-mask_with_buffer).nonzero(as_tuple=True)].reshape(bsz, -1, embed_dim)
# apply Transformer blocks
if self.grad_checkpointing and not torch.jit.is_scripting():
for block in self.encoder_blocks:
x = checkpoint(block, x)
else:
for block in self.encoder_blocks:
x = block(x)
x = self.encoder_norm(x)
return x
def forward_mae_decoder(self, x, mask):
x = self.decoder_embed(x)
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)
# pad mask tokens
mask_tokens = self.mask_token.repeat(mask_with_buffer.shape[0], mask_with_buffer.shape[1], 1).to(x.dtype)
x_after_pad = mask_tokens.clone()
x_after_pad[(1 - mask_with_buffer).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
# decoder position embedding
x = x_after_pad + self.decoder_pos_embed_learned
# apply Transformer blocks
if self.grad_checkpointing and not torch.jit.is_scripting():
for block in self.decoder_blocks:
x = checkpoint(block, x)
else:
for block in self.decoder_blocks:
x = block(x)
x = self.decoder_norm(x)
x = x[:, self.buffer_size:]
x = x + self.diffusion_pos_embed_learned
return x
def forward_loss(self, z, target, mask):
bsz, seq_len, _ = target.shape
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
loss = self.diffloss(z=z, target=target, mask=mask)
return loss
def forward(self, imgs, labels):
# class embed
class_embedding = self.class_emb(labels)
# patchify and mask (drop) tokens
x = self.patchify(imgs)
gt_latents = x.clone().detach()
orders = self.sample_orders(bsz=x.size(0))
mask = self.random_masking(x, orders)
# mae encoder
x = self.forward_mae_encoder(x, mask, class_embedding)
# mae decoder
z = self.forward_mae_decoder(x, mask)
# diffloss
loss = self.forward_loss(z=z, target=gt_latents, mask=mask)
return loss
def sample_tokens(self, bsz, num_iter=64, cfg=1.0, cfg_schedule="linear", labels=None, temperature=1.0, progress=False):
# init and sample generation orders
mask = torch.ones(bsz, self.seq_len).cuda()
tokens = torch.zeros(bsz, self.seq_len, self.token_embed_dim).cuda()
orders = self.sample_orders(bsz)
indices = list(range(num_iter))
if progress:
indices = tqdm(indices)
# generate latents
for step in indices:
cur_tokens = tokens.clone()
# class embedding and CFG
if labels is not None:
class_embedding = self.class_emb(labels)
else:
class_embedding = self.fake_latent.repeat(bsz, 1)
if not cfg == 1.0:
tokens = torch.cat([tokens, tokens], dim=0)
class_embedding = torch.cat([class_embedding, self.fake_latent.repeat(bsz, 1)], dim=0)
mask = torch.cat([mask, mask], dim=0)
# mae encoder
x = self.forward_mae_encoder(tokens, mask, class_embedding)
# mae decoder
z = self.forward_mae_decoder(x, mask)
# mask ratio for the next round, following MaskGIT and MAGE.
mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).cuda()
# masks out at least one for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).cuda(),
torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len))
# get masking for next iteration and locations to be predicted in this iteration
mask_next = mask_by_order(mask_len[0], orders, bsz, self.seq_len)
if step >= num_iter - 1:
mask_to_pred = mask[:bsz].bool()
else:
mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool())
mask = mask_next
if not cfg == 1.0:
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)
# sample token latents for this step
z = z[mask_to_pred.nonzero(as_tuple=True)]
# cfg schedule follow Muse
if cfg_schedule == "linear":
cfg_iter = 1 + (cfg - 1) * (self.seq_len - mask_len[0]) / self.seq_len
elif cfg_schedule == "constant":
cfg_iter = cfg
else:
raise NotImplementedError
sampled_token_latent = self.diffloss.sample(z, temperature, cfg_iter)
if not cfg == 1.0:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) # Remove null class samples
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)
cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
tokens = cur_tokens.clone()
# unpatchify
tokens = self.unpatchify(tokens)
return tokens
def mar_base(**kwargs):
model = MAR(
encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12,
decoder_embed_dim=768, decoder_depth=12, decoder_num_heads=12,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mar_large(**kwargs):
model = MAR(
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mar_huge(**kwargs):
model = MAR(
encoder_embed_dim=1280, encoder_depth=20, encoder_num_heads=16,
decoder_embed_dim=1280, decoder_depth=20, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model