-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
198 lines (164 loc) · 7.32 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from pytorch_lightning.callbacks import ModelCheckpoint
from test_tube import Experiment
from pytorch_lightning import Trainer
import argparse
import logging
import torch
import scipy
import os
import pickle as pkl
import pandas as pd
from torch.utils.data import DataLoader
from src.configs.configs import TGCN as TGCNConfig
from src.configs.configs import Data as DataConfig
from src.data_loader.reader import read_cluster_mapping
from src.data_loader.tensor_dataset import GraphTensorDataset
from src.logs import get_logger_settings, setup_logging
from src.models.tgcn.temporal_spatial_model import TGCN
from src.utils.sparse import dense_to_sparse, sparse_scipy2torch
from src.module import DATACONFIG_GETTER
cfg = DATACONFIG_GETTER()
def get_datasets():
mapping = read_cluster_mapping()
cluster_idx_ids = dict()
datasets = list()
adjs = list()
edgelists = list()
cluster_idx = 0
for cluster_id in mapping:
# cache them in h5
if not os.path.exists(os.path.join(cfg['save_dir_data'], f"cluster_id={cluster_id}.hdf5")):
# some clusters do not exist in the cache folder, ignore them.
continue
adj = scipy.sparse.load_npz(os.path.join(cfg['save_dir_adj'], f"cluster_id={cluster_id}.npz"))
adjs.append(adj)
edgelist = pkl.load(open(os.path.join(cfg['save_dir_adj'], f"cluster_id={cluster_id}.edgelist"), 'rb'))
edgelists.append(edgelist)
datasets.append(os.path.join(cfg['save_dir_data'], f"cluster_id={cluster_id}/"))
cluster_idx_ids[cluster_idx] = cluster_id
cluster_idx += 1
return datasets, adjs, cluster_idx_ids, edgelists
def train():
datasets, adjs, cluster_idx_ids, _ = get_datasets()
# PyTorch summarywriter with a few bells and whistles
exp = Experiment(save_dir=cfg['save_dir_model'])
checkpoint_callback = ModelCheckpoint(
filepath=cfg['save_dir_checkpoints'],
save_best_only=True,
verbose=True,
monitor='avg_val_mae',
mode='min'
)
# pass in experiment for automatic tensorboard logging.
trainer = Trainer(experiment=exp,
max_nb_epochs=TGCNConfig.max_nb_epochs,
train_percent_check=TGCNConfig.train_percent_check,
checkpoint_callback=checkpoint_callback,
gpus=1) if torch.cuda.is_available() else \
Trainer(experiment=exp,
max_nb_epochs=TGCNConfig.max_nb_epochs,
train_percent_check=TGCNConfig.train_percent_check,
checkpoint_callback=checkpoint_callback)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = TGCN(input_dim=TGCNConfig.input_dim,
hidden_dim=TGCNConfig.hidden_dim,
layer_dim=TGCNConfig.layer_dim,
output_dim=TGCNConfig.output_dim,
adjs=adjs,
datasets=datasets,
cluster_idx_ids=cluster_idx_ids,
device=device)
model = model.to(device)
trainer.fit(model)
def load_model(weights_path, adjs, datasets, cluster_idx_ids, device=None):
checkpoint = torch.load(weights_path, map_location=lambda storage, loc: storage)
model = TGCN(input_dim=TGCNConfig.input_dim,
hidden_dim=TGCNConfig.hidden_dim,
layer_dim=TGCNConfig.layer_dim,
output_dim=TGCNConfig.output_dim,
adjs=adjs,
datasets=datasets,
cluster_idx_ids=cluster_idx_ids,
device=device)
model.load_state_dict(checkpoint['state_dict'])
model.on_load_checkpoint(checkpoint)
model.freeze()
return model
def get_data_loader(datasets, adjs, cluster_idx_ids, mode):
if mode == "train":
time_steps = DataConfig.train_num_steps
elif mode == "valid":
time_steps = DataConfig.valid_num_steps
else:
time_steps = DataConfig.test_num_steps
ds = GraphTensorDataset(datasets, adj_list=adjs,
mode=mode,
cluster_idx_ids=cluster_idx_ids,
time_steps=time_steps)
return DataLoader(ds, batch_size=1, shuffle=False, pin_memory=True, num_workers=0)
def test():
datasets, adjs, cluster_idx_ids, edgelists = get_datasets()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(cfg['save_dir_checkpoints'],
adjs=adjs, cluster_idx_ids=cluster_idx_ids, datasets=datasets, device=device)
model = model.to(device)
adjs = [sparse_scipy2torch(adj) for adj in adjs]
train_dataloader = get_data_loader(datasets, adjs, cluster_idx_ids, mode="train")
valid_dataloader = get_data_loader(datasets, adjs, cluster_idx_ids, mode="valid")
test_dataloader = get_data_loader(datasets, adjs, cluster_idx_ids, mode="test")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dl_idx = 0
for dl in (train_dataloader, valid_dataloader, test_dataloader):
if dl_idx == 0:
time_steps = DataConfig.train_num_steps
base_steps = 0
mode = "train"
elif dl_idx == 1:
time_steps = DataConfig.valid_num_steps
base_steps = DataConfig.train_num_steps
mode = "valid"
else:
time_steps = DataConfig.test_num_steps
base_steps = DataConfig.train_num_steps + DataConfig.test_num_steps
mode = "test"
speed_tile = {}
prev_gidx = 0
with torch.no_grad():
for batch_nb, batch in enumerate(dl):
time_step = batch_nb % time_steps + base_steps
graph_idx = int(batch_nb / time_steps)
if graph_idx > prev_gidx:
df = pd.DataFrame.from_dict(speed_tile)
df.columns = list(map(str, range(time_steps)))
df['segment_id'] = edgelists[prev_gidx]
for n, col in enumerate(['from_node', 'to_node']):
df[col] = df['segment_id'].apply(lambda l: l[n])
df = df.drop('segment_id', axis=1)
df.to_parquet(f"{graph_idx}_{mode}_generated_speed.parquet", compression="snappy")
speed_tile = {}
if batch_nb is None:
continue
batch = [b.to(device) for b in batch]
x, y, adj, mask = batch
mask = mask.float()
adj = dense_to_sparse(adj.squeeze(dim=0)).float()
x = x.squeeze(dim=0)
x = x.permute(0, 2, 1)
y_hat = model.forward(x, adj).squeeze(dim=0)
# fuse y and y_hat: take ground-truth speeds
fused_y = mask * y.float() + (1 - mask) * y_hat.float()
speed_tile[time_step] = fused_y
prev_gidx = graph_idx
dl_idx += 1
if __name__ == "__main__":
log_setting = get_logger_settings(logging.INFO)
setup_logging(log_setting)
parser = argparse.ArgumentParser(description='Speed model training / serving.')
parser.add_argument('--train', dest='train_mode', action='store_true')
parser.add_argument('--test', dest='inference_mode', action='store_false')
parser.set_defaults(train_mode=True)
args = parser.parse_args()
if args.train_mode:
train()
else:
test()