-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsort_file.py
92 lines (87 loc) · 2.16 KB
/
sort_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
keyword = [
"DWT",
" DWT",
" CNN ",
" RNN ",
" CTC ",
" Attention ",
" SOTA ",
" E2E - End-to-end ",
" Average pooling ",
" ReLU ",
" self-attention ",
" convolution ",
" Computer Vision - CV ",
" Convolution Subsampling ",
" relative sinusoidal positional encoding scheme ",
" pointwise convolution ",
" GLU - Gated Linear Unit ",
" temporal classification ",
" ctc - connectionist temporal classification ",
" hmm - hidden markov model ",
" crf - conditional random field ",
" time-step ",
" vector ",
" fine-tuning ",
" contrastive task - contrastive learning ",
" codebooks ",
" logits ",
" cosine similarity ",
" batch ",
" hand-labeled data sets ",
" weak supervision ",
" APED - Automatic Phoneme Error Detection ",
" call ",
" capt ",
" deep belief network - dbn ",
" self-attention ",
" convolution ",
" hmm ",
" crf ",
" stride ",
" time-step ",
" codebook ",
" feature encoder ",
" contrastive loss ",
" diversity loss ",
" temperature ",
" transfer learning ",
" weak supervision ",
" multiple-instance learning ",
" global statistics supervision ",
" partial supervision ",
" self-labeling ",
" decision-dierected learning ",
" pseudo label ",
"phoneme",
" ImageNet ",
" state-of-the-art ",
" wer ",
" per ",
" ler ",
" language model ",
" fine-tune ",
" downstream task ",
" beam search ",
" beam width ",
" ground truth ",
"Supervised Learning",
"Unsupervised Learning",
"Semi-supervised learning",
"NST – Noisy Student Training",
"APED - Automatic Pronunciation Error Detection",
"Pre-training",
"Self-training",
"LCS - Longest Common Subsequence",
"Encoder",
"CALL - Computer-Assisted Language Learning",
"CAPT – Computer-Assisted Pronunciation Training",
"GOP – Goodness of Pronunciation",
]
def process(text):
return text.strip().lower()
data = list(map(process, keyword))
data = sorted(data)
f = open("keyword_sorted.txt", "w")
for i in data:
f.write(i + "\n")