forked from cgpotts/cs224u
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtorch_rnn_classifier.py
511 lines (421 loc) · 16.8 KB
/
torch_rnn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import numpy as np
from operator import itemgetter
import torch
import torch.nn as nn
import torch.utils.data
from torch_model_base import TorchModelBase
import utils
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2022"
class TorchRNNDataset(torch.utils.data.Dataset):
def __init__(self, sequences, seq_lengths, y=None):
"""
Dataset class for RNN classifiers. The heavy-lifting is done by
`collate_fn`, which handles the padding and packing necessary to
efficiently process variable length sequences.
Parameters
----------
sequences : list of `torch.LongTensor`, `len(n_examples)`
seq_lengths : torch.LongTensor, shape `(n_examples, )`
y : None or torch.LongTensor, shape `(n_examples, )`
If None, then we are in prediction mode. Otherwise, these are
indices into the list of classes.
"""
assert len(sequences) == len(seq_lengths)
self.sequences = sequences
self.seq_lengths = seq_lengths
if y is not None:
assert len(sequences) == len(y)
self.y = y
@staticmethod
def collate_fn(batch):
"""
Format a batch of examples for use in both training and prediction.
Parameters
----------
batch : tuple of length 2 (prediction) or 3 (training)
The first element is the list of input sequences. The
second is the list of lengths for those sequences. The third,
where present, is the list of labels.
Returns
-------
X : torch.Tensor, shape `(batch_size, max_batch_length)`
As padded by `torch.nn.utils.rnn.pad_sequence.
seq_lengths : torch.LongTensor, shape `(batch_size, )`
y : torch.LongTensor, shape `(batch_size, )`
Only for training. In the case where `y` cannot be turned into
a Tensor, we assume it is because it is a list of variable
length sequences and to use `torch.nn.utils.rnn.pad_sequence`.
The hope is that this will accomodate sequence prediction.
"""
batch_elements = list(zip(*batch))
X = batch_elements[0]
seq_lengths = batch_elements[1]
X = torch.nn.utils.rnn.pad_sequence(X, batch_first=True)
seq_lengths = torch.tensor(seq_lengths)
if len(batch_elements) == 3:
y = batch_elements[2]
# We can try to accommodate the case where `y` is a sequence
# loss with potentially different lengths by resorting to
# padding if creating a tensor is not possible:
try:
y = torch.tensor(y)
except (ValueError, TypeError):
y = torch.nn.utils.rnn.pad_sequence(y, batch_first=True)
return X, seq_lengths, y
else:
return X, seq_lengths
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
if self.y is not None:
return self.sequences[idx], self.seq_lengths[idx], self.y[idx]
else:
return self.sequences[idx], self.seq_lengths[idx]
class TorchRNNModel(nn.Module):
def __init__(self,
vocab_size,
embed_dim=50,
embedding=None,
use_embedding=True,
rnn_cell_class=nn.LSTM,
hidden_dim=50,
bidirectional=False,
freeze_embedding=False):
"""
Defines the core RNN computation graph. For an explanation of the
parameters, see `TorchRNNClassifierModel`. This class handles just
the RNN components of the overall classifier model.
`TorchRNNClassifierModel` uses the output states to create a
classifier.
"""
super().__init__()
self.vocab_size = vocab_size
self.use_embedding = use_embedding
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
self.bidirectional = bidirectional
self.freeze_embedding = freeze_embedding
# Graph
if self.use_embedding:
self.embedding = self._define_embedding(
embedding, vocab_size, self.embed_dim, self.freeze_embedding)
self.embed_dim = self.embedding.embedding_dim
self.rnn = rnn_cell_class(
input_size=self.embed_dim,
hidden_size=hidden_dim,
batch_first=True,
bidirectional=bidirectional)
def forward(self, X, seq_lengths):
if self.use_embedding:
X = self.embedding(X)
embs = torch.nn.utils.rnn.pack_padded_sequence(
X,
batch_first=True,
lengths=seq_lengths.cpu(),
enforce_sorted=False)
outputs, state = self.rnn(embs)
return outputs, state
@staticmethod
def _define_embedding(embedding, vocab_size, embed_dim, freeze_embedding):
if embedding is None:
emb = nn.Embedding(vocab_size, embed_dim)
emb.weight.requires_grad = not freeze_embedding
return emb
elif isinstance(embedding, np.ndarray):
embedding = torch.FloatTensor(embedding)
return nn.Embedding.from_pretrained(
embedding, freeze=freeze_embedding)
else:
return embedding
class TorchRNNClassifierModel(nn.Module):
def __init__(self, rnn, output_dim, classifier_activation):
"""
Defines the core computation graph for `TorchRNNClassifier`. This
involves using the outputs of a `TorchRNNModel` instance to
build a softmax classifier:
h[t] = rnn(x[t], h[t-1])
h = f(h[-1].dot(W_hy) + b_h)
y = softmax(hW + b_y)
This class uses its `rnn` parameter to compute each `h[1]`, and
then it adds the classifier parameters that use `h[-1]` as inputs.
Where `bidirectional=True`, `h[-1]` is `torch.cat([h[0], h[-1])`.
"""
super().__init__()
self.rnn = rnn
self.output_dim = output_dim
self.hidden_dim = self.rnn.hidden_dim
if self.rnn.bidirectional:
self.classifier_dim = self.hidden_dim * 2
else:
self.classifier_dim = self.hidden_dim
self.hidden_layer = nn.Linear(
self.classifier_dim, self.hidden_dim)
self.classifier_activation = classifier_activation
self.classifier_layer = nn.Linear(
self.hidden_dim, self.output_dim)
def forward(self, X, seq_lengths):
outputs, state = self.rnn(X, seq_lengths)
state = self.get_batch_final_states(state)
if self.rnn.bidirectional:
state = torch.cat((state[0], state[1]), dim=1)
h = self.classifier_activation(self.hidden_layer(state))
logits = self.classifier_layer(h)
return logits
def get_batch_final_states(self, state):
if self.rnn.rnn.__class__.__name__ == 'LSTM':
return state[0].squeeze(0)
else:
return state.squeeze(0)
class TorchRNNClassifier(TorchModelBase):
def __init__(self,
vocab,
hidden_dim=50,
embedding=None,
use_embedding=True,
embed_dim=50,
rnn_cell_class=nn.LSTM,
bidirectional=False,
freeze_embedding=False,
classifier_activation=nn.ReLU(),
**base_kwargs):
"""
RNN-based Recurrent Neural Network for classification problems.
The network will work for any kind of classification task.
Parameters
----------
vocab : list of str
This should be the vocabulary. It needs to be aligned with
`embedding` in the sense that the ith element of vocab
should be represented by the ith row of `embedding`. Ignored
if `use_embedding=False`.
embedding : np.array or None
Each row represents a word in `vocab`, as described above.
use_embedding : bool
If True, then incoming examples are presumed to be lists of
elements of the vocabulary. If False, then they are presumed
to be lists of vectors. In this case, the `embedding` and
`embed_dim` arguments are ignored, since no embedding is needed
and `embed_dim` is set by the nature of the incoming vectors.
embed_dim : int
Dimensionality for the initial embeddings. This is ignored
if `embedding` is not None, as a specified value there
determines this value. Also ignored if `use_embedding=False`.
rnn_cell_class : class for PyTorch recurrent layer
Should be just the class name, not an instance of the class.
hidden_dim : int
Dimensionality of the hidden layer in the RNN.
bidirectional : bool
If True, then the final hidden states from passes in both
directions are used.
freeze_embedding : bool
If True, the embedding will be updated during training. If
False, the embedding will be frozen. This parameter applies
to both randomly initialized and pretrained embeddings.
classifier_activation : nn.Module
The non-activation function used by the network for the
hidden layer of the classifier.
**base_kwargs
For details, see `torch_model_base.py`.
Attributes
----------
loss: nn.CrossEntropyLoss(reduction="mean")
self.params: list
Extends TorchModelBase.params with names for all of the
arguments for this class to support tuning of these values
using `sklearn.model_selection` tools.
"""
self.vocab = vocab
self.hidden_dim = hidden_dim
self.embedding = embedding
self.use_embedding = use_embedding
self.embed_dim = embed_dim
self.rnn_cell_class = rnn_cell_class
self.bidirectional = bidirectional
self.freeze_embedding = freeze_embedding
self.classifier_activation = classifier_activation
super().__init__(**base_kwargs)
self.params += [
'hidden_dim',
'embed_dim',
'embedding',
'use_embedding',
'rnn_cell_class',
'bidirectional',
'freeze_embedding',
'classifier_activation']
self.loss = nn.CrossEntropyLoss(reduction="mean")
def build_graph(self):
"""
The core computation graph. This is called by `fit`, which sets
the `self.model` attribute.
Returns
-------
TorchRNNModel
"""
rnn = TorchRNNModel(
vocab_size=len(self.vocab),
embedding=self.embedding,
use_embedding=self.use_embedding,
embed_dim=self.embed_dim,
rnn_cell_class=self.rnn_cell_class,
hidden_dim=self.hidden_dim,
bidirectional=self.bidirectional,
freeze_embedding=self.freeze_embedding)
model = TorchRNNClassifierModel(
rnn=rnn,
output_dim=self.n_classes_,
classifier_activation=self.classifier_activation)
self.embed_dim = rnn.embed_dim
return model
def build_dataset(self, X, y=None):
"""
Format data for training and prediction.
Parameters
----------
X : list of lists
The raw sequences. The lists are expected to contain
elements of `self.vocab`. This method converts them to
indices for PyTorch.
y : list or None
The raw labels. This method turns them into indices for
PyTorch processing. If None, then we are in prediction
mode.
Returns
-------
TorchRNNDataset
"""
X, seq_lengths = self._prepare_sequences(X)
if y is None:
return TorchRNNDataset(X, seq_lengths)
else:
self.classes_ = sorted(set(y))
self.n_classes_ = len(self.classes_)
class2index = dict(zip(self.classes_, range(self.n_classes_)))
y = [class2index[label] for label in y]
return TorchRNNDataset(X, seq_lengths, y)
def _prepare_sequences(self, X):
"""
Internal method for turning X into a list of indices into
`self.vocab` and calculating the true lengths of the elements
in `X`.
Parameters
----------
X : list of lists, `len(n_examples)`
Returns
-------
new_X : list of lists, `len(n_examples)`
seq_lengths : torch.LongTensor, shape `(n_examples, )`
"""
if self.use_embedding:
new_X = []
seq_lengths = []
index = dict(zip(self.vocab, range(len(self.vocab))))
unk_index = index['$UNK']
for ex in X:
seq = [index.get(w, unk_index) for w in ex]
seq = torch.tensor(seq)
new_X.append(seq)
seq_lengths.append(len(seq))
else:
new_X = [torch.FloatTensor(ex) for ex in X]
seq_lengths = [len(ex) for ex in X]
self.embed_dim = X[0][0].shape[0]
seq_lengths = torch.tensor(seq_lengths)
return new_X, seq_lengths
def score(self, X, y, device=None):
"""
Uses macro-F1 as the score function. Note: this departs from
`sklearn`, where classifiers use accuracy as their scoring
function. Using macro-F1 is more consistent with our course.
This function can be used to evaluate models, but its primary
use is in cross-validation and hyperparameter tuning.
Parameters
----------
X: np.array, shape `(n_examples, n_features)`
y: iterable, shape `len(n_examples)`
These can be the raw labels. They will converted internally
as needed. See `build_dataset`.
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
float
"""
preds = self.predict(X, device=device)
return utils.safe_macro_f1(y, preds)
def predict_proba(self, X, device=None):
"""
Predicted probabilities for the examples in `X`.
Parameters
----------
X : np.array, shape `(n_examples, n_features)`
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
np.array, shape `(len(X), self.n_classes_)`
Each row of this matrix will sum to 1.0.
"""
preds = self._predict(X, device=device)
probs = torch.softmax(preds, dim=1).cpu().numpy()
return probs
def predict(self, X, device=None):
"""
Predicted labels for the examples in `X`. These are converted
from the integers that PyTorch needs back to their original
values in `self.classes_`.
Parameters
----------
X : np.array, shape `(n_examples, n_features)`
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
list, length len(X)
"""
probs = self.predict_proba(X, device=device)
return [self.classes_[i] for i in probs.argmax(axis=1)]
def simple_example():
utils.fix_random_seeds()
vocab = ['a', 'b', '$UNK']
# No b before an a
train = [
[list('ab'), 'good'],
[list('aab'), 'good'],
[list('abb'), 'good'],
[list('aabb'), 'good'],
[list('ba'), 'bad'],
[list('baa'), 'bad'],
[list('bba'), 'bad'],
[list('bbaa'), 'bad'],
[list('aba'), 'bad']]
test = [
[list('baaa'), 'bad'],
[list('abaa'), 'bad'],
[list('bbaa'), 'bad'],
[list('aaab'), 'good'],
[list('aaabb'), 'good']]
X_train, y_train = zip(*train)
X_test, y_test = zip(*test)
mod = TorchRNNClassifier(vocab)
print(mod)
mod.fit(X_train, y_train)
preds = mod.predict(X_test)
print("\nPredictions:")
for ex, pred, gold in zip(X_test, preds, y_test):
score = "correct" if pred == gold else "incorrect"
print("{0:>6} - predicted: {1:>4}; actual: {2:>4} - {3}".format(
"".join(ex), pred, gold, score))
return mod.score(X_test, y_test)
if __name__ == '__main__':
simple_example()