-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathupdate_wikimia.py
134 lines (111 loc) · 6.09 KB
/
update_wikimia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import wikipediaapi
from datetime import datetime, timedelta
import utils
from tqdm.auto import tqdm
import datasets
import argparse
from itertools import chain
from functools import partial
import numpy as np
from huggingface_hub import login
def get_category_members(category_name, wiki, level=0, max_level=2):
category = wiki.page(category_name)
members = category.categorymembers
articles = []
progress_bar = tqdm(members.values(), desc=f"Getting articles from {category_name}", disable=level > 0, postfix=f"Articles: {len(articles)}")
for c in members.values():
if c.ns == wikipediaapi.Namespace.CATEGORY and level < max_level:
articles.extend(get_category_members(c.title, wiki, level=level + 1, max_level=max_level))
elif c.ns == wikipediaapi.Namespace.MAIN:
articles.append(c)
progress_bar.update()
progress_bar.set_postfix({"Articles": len(articles)})
return articles
def get_wikipedia_category_events(start_month_year, end_month_year):
wiki_wiki = wikipediaapi.Wikipedia('DatasetBot/1.0 ([email protected])', 'en')
# Convert input strings to datetime objects
start_date = datetime.strptime(start_month_year, '%B %Y')
end_date = datetime.strptime(end_month_year, '%B %Y')
current_date = start_date
events = []
while current_date <= end_date:
month_year = current_date.strftime('%B %Y')
category_name = f"Category:{month_year} events by country"
articles = get_category_members(category_name, wiki_wiki)
events.extend(articles)
# Move to the next month
next_month = current_date.replace(day=28) + timedelta(days=4) # this will never fail
current_date = next_month.replace(day=1)
return events
def extract_event_content(events, contect_fields=["text", "summary"]):
extracted_events = {field: [] for field in contect_fields}
for event in tqdm(events, desc="Extracting event content"):
for field in contect_fields:
extracted_events[field].append(getattr(event, field))
extracted_dataset = datasets.Dataset.from_dict(extracted_events)
return extracted_dataset
def pack_sentence(examples, block_size=128):
concatenated_examples = " ".join(examples['content'])
total_words = concatenated_examples.split()
total_length = len(total_words)
packed_examples = []
assert total_length >= block_size, "The total length of the examples is less than the block size"
total_length = total_length - (total_length % block_size)
for i in range(0, total_length, block_size):
packed_examples.append(" ".join(total_words[i:i+block_size]))
return {"content": packed_examples}
def add_label(example, label):
example["label"] = label
return example
def add_length(example, block_sizes):
length = len(example["summary"].split())
idx = np.searchsorted(block_sizes, length, side="right") - 1
if idx < 0:
example["length"] = 0
else:
example["length"] = block_sizes[idx]
truncated_content = " ".join(example["summary"].split()[:block_sizes[idx]])
example["summary"] = truncated_content
return example
def main():
parser = argparse.ArgumentParser(description="Update WikiMIA dataset")
parser.add_argument("--mem_start", type=str, default="January 2015", help="The start month and year for the member events")
parser.add_argument("--mem_end", type=str, default="December 2016", help="The end month and year for the member events")
parser.add_argument("--non_start", type=str, default="March 2024", help="The start month and year for the non-member events")
parser.add_argument("--non_end", type=str, default="December 2024", help="The end month and year for the non-member events")
parser.add_argument("--output_dir", type=str, default="WikiMIA-24", help="The output directory to save the dataset")
parser.add_argument("--block_sizes", type=int, default=[32, 64, 128, 256], nargs="+", help="The block sizes for the dataset")
parser.add_argument("-t", "--token", type=str, default="your_hftoken")
args = parser.parse_args()
utils.set_proxy()
login(token=args.token)
mem_start = args.mem_start
mem_end = args.mem_end
non_start = args.non_start
non_end = args.non_end
mem_events = get_wikipedia_category_events(mem_start, mem_end)
non_events = get_wikipedia_category_events(non_start, non_end)
mem_raw = extract_event_content(mem_events)
non_raw = extract_event_content(non_events)
mem_raw.save_to_disk("WikiMIA-24/mem_raw")
non_raw.save_to_disk("WikiMIA-24/non_raw")
# mem_raw = datasets.load_from_disk("WikiMIA-24/mem_raw")
# non_raw = datasets.load_from_disk("WikiMIA-24/non_raw")
mem_raw = mem_raw.map(partial(add_label, label=1), load_from_cache_file=False, desc="Adding label to member events")
non_raw = non_raw.map(partial(add_label, label=0), load_from_cache_file=False, desc="Adding label to non-member events")
dataset_raw = datasets.concatenate_datasets([mem_raw, non_raw]).map(partial(add_length, block_sizes=args.block_sizes), load_from_cache_file=False, desc="Adding length to the dataset").shuffle()
dataset_raw = dataset_raw.remove_columns(["text"])
dataset_raw = dataset_raw.rename_column("summary", "input")
dataset_pack = {f"WikiMIA_length{block_size}": dataset_raw.filter(lambda example: example["length"] == block_size) for block_size in args.block_sizes}
for split, dataset in dataset_pack.items():
mem_dataset = dataset.filter(lambda example: example["label"] == 1)
non_dataset = dataset.filter(lambda example: example["label"] == 0)
min_length = min(len(mem_dataset), len(non_dataset))
mem_dataset = mem_dataset.select(range(min_length))
non_dataset = non_dataset.select(range(min_length))
dataset_pack[split] = datasets.concatenate_datasets([mem_dataset, non_dataset]).shuffle().remove_columns(["length"])
dataset_pack = datasets.DatasetDict(dataset_pack)
dataset_pack.save_to_disk(args.output_dir)
dataset_pack.push_to_hub("wjfu99/WikiMIA-24", private=False)
if __name__ == "__main__":
main()