-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
380 lines (317 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# based on https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py
import os
import torch
import math
from tqdm.auto import tqdm
from accelerate import Accelerator
from datasets import load_dataset
from torchvision import transforms
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.loaders import AttnProcsLayers
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.optimization import get_scheduler
import numpy as np
import random
import torch.nn.functional as F
from attention import IA3CrossAttnProcessor, save_attn_processors, load_attn_processors
# parameters
dataset_name = 'lambdalabs/pokemon-blip-captions'
image_column = 'image'
caption_column = 'text'
output_dir = 'output'
gradient_accumulation_steps = 1
model_name = 'runwayml/stable-diffusion-v1-5'
revision = None
mixed_precision = 'fp16'
weight_dtype = torch.float16
learning_rate = 3e-4
adam_beta1 = 0.9
adam_beta2 = 0.999
adam_weight_decay = 1e-2
adam_epsilon = 1e-8
cache_dir = 'cache'
resolution = 512
train_batch_size = 1
dataloader_num_workers = 1
num_train_epochs = 25
max_grad_norm = 1.0
lr_warmup_steps = 500
lr_scheduler_type = 'constant'
checkpointing_steps = 500
validation_prompt = 'donald trump'
validation_epochs = 1
num_validation_images = 4
resume_load_path = None
learn_biases = True
use_8bit_optimizer = False
def main():
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision
)
# models
noise_scheduler = DDPMScheduler.from_pretrained(
model_name, subfolder="scheduler"
)
tokenizer = CLIPTokenizer.from_pretrained(
model_name, subfolder="tokenizer", revision=revision
)
text_encoder = CLIPTextModel.from_pretrained(
model_name, subfolder="text_encoder", revision=revision
)
vae = AutoencoderKL.from_pretrained(
model_name, subfolder="vae", revision=revision
)
unet = UNet2DConditionModel.from_pretrained(
model_name, subfolder="unet", revision=revision
)
# only train the attention processors
unet.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
# move to GPU
unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
# create or load attention processors
if resume_load_path is not None:
load_attn_processors(unet, 'cuda', torch.float32, resume_load_path)
else:
ia3_attn_procs = {}
for name in unet.attn_processors.keys():
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[
block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
ia3_attn_procs[name] = IA3CrossAttnProcessor(
hidden_size=hidden_size,
learn_biases=learn_biases
).to(torch.float32)
unet.set_attn_processor(ia3_attn_procs)
if use_8bit_optimizer:
import bitsandbytes as bnb
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
ia3_layers = AttnProcsLayers(unet.attn_processors)
optimizer = optimizer_cls(
ia3_layers.parameters(),
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
# load dataset and transforms
dataset = load_dataset(
dataset_name,
cache_dir=cache_dir
)
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption)
if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
)
return inputs.input_ids
train_transforms = transforms.Compose(
[
transforms.Resize(
resolution, interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.CenterCrop(resolution),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [
train_transforms(image) for image in images]
examples["input_ids"] = tokenize_captions(examples)
return examples
with accelerator.main_process_first():
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"]
for example in examples])
pixel_values = pixel_values.to(
memory_format=torch.contiguous_format).float()
input_ids = torch.stack([example["input_ids"] for example in examples])
return {"pixel_values": pixel_values, "input_ids": input_ids}
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=train_batch_size,
num_workers=dataloader_num_workers,
)
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps)
max_train_steps = num_train_epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(
lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
ia3_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
ia3_layers, optimizer, train_dataloader, lr_scheduler
)
if accelerator.is_main_process:
accelerator.init_trackers("text2image-fine-tune")
global_step = 0
first_epoch = 0
total_batch_size = train_batch_size * \
accelerator.num_processes * gradient_accumulation_steps
progress_bar = tqdm(range(global_step, max_train_steps),
disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
# training loop
for epoch in range(first_epoch, num_train_epochs):
unet.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(
dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(
latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(
latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}")
# Predict the noise residual and compute loss
model_pred = unet(noisy_latents, timesteps,
encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(),
target.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(
loss.repeat(train_batch_size)).mean()
train_loss += avg_loss.item() / gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = ia3_layers.parameters()
accelerator.clip_grad_norm_(params_to_clip, max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(
output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
# also save the attention processors by themselves
save_attn_processors(unet, 'cuda', torch.float32,
os.path.join(save_path, "attn_processors.pt"))
logs = {"step_loss": loss.detach().item(
), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
# validation check
if accelerator.is_main_process:
if validation_prompt is not None and epoch % validation_epochs == 0:
# create pipeline
pipeline = DiffusionPipeline.from_pretrained(
model_name,
unet=accelerator.unwrap_model(unet),
revision=revision,
torch_dtype=weight_dtype
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(
device=accelerator.device)
images = []
for _ in range(num_validation_images):
images.append(
pipeline(
validation_prompt, num_inference_steps=30, generator=generator).images[0]
)
# save images
save_path = os.path.join(
output_dir, f"validation-images-{global_step}")
os.makedirs(save_path, exist_ok=True)
for i, image in enumerate(images):
image.save(os.path.join(save_path, f"{i}.png"))
del pipeline
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
# save attention processors
if accelerator.is_main_process:
unet = unet.to(torch.float32)
save_attn_processors(unet, 'cuda', torch.float32,
os.path.join(output_dir, "attn_processors.pt"))
# free memory
del unet
del vae
del text_encoder
del optimizer
torch.cuda.empty_cache()
# Final inference
# Load previous pipeline
pipeline = DiffusionPipeline.from_pretrained(
model_name, revision=revision, torch_dtype=weight_dtype
)
pipeline = pipeline.to(accelerator.device)
# load attention processors
load_attn_processors(pipeline.unet, 'cuda', torch.float32,
os.path.join(output_dir, "attn_processors.pt"))
# run inference
generator = torch.Generator(device=accelerator.device)
images = []
for _ in range(num_validation_images):
images.append(pipeline(validation_prompt,
num_inference_steps=30, generator=generator).images[0])
# save images
save_path = os.path.join(output_dir, f"final-images")
os.makedirs(save_path, exist_ok=True)
for i, image in enumerate(images):
image.save(os.path.join(save_path, f"{i}.png"))
accelerator.end_training()
if __name__ == "__main__":
main()