Skip to content

Latest commit

 

History

History
43 lines (22 loc) · 6.66 KB

File metadata and controls

43 lines (22 loc) · 6.66 KB

33. Why we compare to human-level performance

33. Tại sao chúng ta so sánh với chất lượng mức con người?

Many machine learning systems aim to automate things that humans do well. Examples include image recognition, speech recognition, and email spam classification. Learning algorithms have also improved so much that we are now surpassing human-level performance on more and more of these tasks.

Nhiều hệ thống học máy hướng tới tự động hóa những thứ con người làm tốt. Ví dụ như nhận dạng hình ảnh, nhận dạng giọng nói, và phân loại thư rác. Các thuật toán học cũng đã được cải thiện rất nhiều, đến mức vượt qua chất lượng mức con người trong ngày càng nhiều tác vụ.

Further, there are several reasons building an ML system is easier if you are trying to do a task that people can do well:

Hơn nữa, có rất nhiều lý do khiến việc xây dựng một hệ thống ML dễ dàng hơn nếu bạn đang giải quyết một tác vụ con người có thể làm tốt:

  1. Ease of obtaining data from human labelers. For example, since people recognize cat images well, it is straightforward for people to provide high accuracy labels for your learning algorithm.
  1. Dễ dàng thu thập dữ liệu từ người gán nhãn. Ví dụ, con người nhận diện hình ảnh mèo tốt nên việc mọi người cung cấp nhãn có độ chính xác cao cho thuật toán học tập là điều đơn giản.
  1. Error analysis can draw on human intuition. Suppose a speech recognition algorithm is doing worse than human-level recognition. Say it incorrectly transcribes an audio clip as "This recipe calls for a pear of apples," mistaking "pair" for "pear." You can draw on human intuition and try to understand what information a person uses to get the correct transcription, and use this knowledge to modify the learning algorithm.
  1. Phân tích lỗi có thể dựa vào trực giác của con người. Giả sử rằng một thuật toán nhận dạng giọng nói làm tệ hơn so với con người. Giả dụ nó ghi nhầm một đoạn âm thanh thành "This recipe calls for a pear of apples," (dịch là "công thức nấu ăn này cần một quả lê của táo") gây ra lỗi tại từ "pair" trở thành "pear". Bạn có thể dựa vào trực giác và cố gắng hiểu thông tin nào một người sử dụng để thu được bản ghi thoại chuẩn, và dùng thông tin này để điều chỉnh thuật toán.
  1. Use human-level performance to estimate the optimal error rate and also set a "desired error rate." Suppose your algorithm achieves 10% error on a task, but a person achieves 2% error. Then we know that the optimal error rate is 2% or lower and the avoidable bias is at least 8%. Thus, you should try bias-reducing techniques.
  1. Sử dụng chất lượng mức con người để ước tính tỷ lệ lỗi tối ưu cũng như đặt ra một "tỷ lệ lỗi mong muốn." Giả sử thuật toán của bạn trả về 10% lỗi trong một tác vụ, nhưng một người chỉ lỗi 2%. Dựa vào đó, chúng ta biết rằng tỷ lệ lỗi tối ưu là 2% hoặc thấp hơn và độ chệch có thể tránh ít nhất là 8%. Vì vậy, bạn nên thử các kỹ thuật giảm độ chệch.

Even though item #3 might not sound important, I find that having a reasonable and achievable target error rate helps accelerate a team’s progress. Knowing your algorithm has high avoidable bias is incredibly valuable and opens up a menu of options to try.

Mặc dù mục số 3 nghe có vẻ không quan trọng, tôi thấy rằng việc xác định mục tiêu tỷ lệ lỗi hợp lý sẽ giúp đẩy nhanh tiến độ của nhóm. Việc biết thuật toán của bạn có độ chệch cao nhưng có thể tránh được là vô cùng có giá trị và mở ra nhiều tùy chọn để thử.

There are some tasks that even humans aren’t good at. For example, picking a book to recommend to you; or picking an ad to show a user on a website; or predicting the stock market. Computers already surpass the performance of most people on these tasks. With these applications, we run into the following problems:

Có những tác vụ mà ngay cả con người cũng không giỏi. Ví dụ, chọn một cuốn sách để giới thiệu cho bạn; hoặc chọn một quảng cáo để hiển thị cho người dùng trên một trang web; hoặc dự đoán thị trường chứng khoán. Máy tính đã trở nên hiệu quả hơn hầu hết mọi người trong những tác vụ này. Với các ứng dụng này, chúng ta gặp phải các vấn đề sau:

  • It is harder to obtain labels. For example, it’s hard for human labelers to annotate a database of users with the "optimal" book recommendation. If you operate a website or app that sells books, you can obtain data by showing books to users and seeing what they buy. If you do not operate such a site, you need to find more creative ways to get data.
  • Việc lấy nhãn khó hơn. Ví dụ, người ghi nhãn khó có thể dán nhãn một cơ sở dữ liệu người dùng với danh sách gợi ý sách tối ưu. Nếu bạn vận hành một trang web hoặc ứng dụng bán sách, bạn có thể lấy dữ liệu bằng cách hiển thị sách cho người dùng và xem những gì họ mua. Nếu bạn không vận hành một trang web như vậy, bạn cần tìm những cách sáng tạo hơn để lấy dữ liệu.
  • Human intuition is harder to count on. For example, pretty much no one can predict the stock market. So if our stock prediction algorithm does no better than random guessing, it is hard to figure out how to improve it.
  • Trực giác của con người khó dựa vào hơn. Ví dụ, khá nhiều người không thể dự đoán được thị trường chứng khoán. Vì vậy, nếu thuật toán dự đoán cổ phiếu của chúng ta không tốt hơn đoán ngẫu nhiên, thật khó để tìm ra cách cải thiện nó.
  • It is hard to know what the optimal error rate and reasonable desired error rate is. Suppose you already have a book recommendation system that is doing quite well. How do you know how much more it can improve without a human baseline?
  • Thật khó để biết tỷ lệ lỗi tối ưu và tỷ lệ lỗi mong muốn hợp lý là gì. Giả sử bạn đã có một hệ thống giới thiệu sách đang hoạt động khá tốt. Làm thế nào để bạn biết nó có thể cải thiện bao nhiêu nếu không có giải pháp cấp con người?