Skip to content

Latest commit

 

History

History
135 lines (96 loc) · 4.27 KB

README.md

File metadata and controls

135 lines (96 loc) · 4.27 KB

FastestStreamDet最速流推理

A inference implementation that supports multiple input streams in a single file based on FastestDet.

一个基于FastestDet的单文件多类型输入推理实现

开箱即用兄dei

video_demo

Advance强处

  • Use the ONNX model to infer real-time camera streams, images, and video file streams.
  • 使用通用开源的onnx模型格式,能推理摄像头实时流、图片、视频文件流等多种类型的输入。
  • Simply output inference results in a variety of ways.
  • 输出可随心所欲地以不同方式(保存、字节码导出返回……)处理,文件里都给你提前写好想要什么输出方式了
  • Single file.
  • 单文件。(指的是命令行用的核心部分,UI实现看看行不行吧)
  • Debugged problem carefully, fixing most bugs.
  • 踩了无数的坑,包没问题的,有错你Issue我

How to use咋用

Tips: Never use ctrl+c to force an working program stopping. You may found the camera still being used.

别手贱直接CTRL+C给正常工作的推理进程干掉了,不然用摄像头的时候有你好果子吃的(摄像头:这给我干哪了,这还是地球吗?)

Install the required dependencies firstly

先把下面这些库装好,python不是3.8版本的话会有奇妙的bug

The dependency onnxruntime might be hard to be installed on Linux platforms.

Linux装onnxruntime是真的坐牢,慎用

  • Python(3.8 for recommended version) and pip
  • opencv-python
  • numpy==1.23.0
  • onnx_simplifier==0.3.10
  • onnxruntime==1.16.0
  • pathlib
  • argparse

Demo示例

  • Type in the terminal:

  • 复制到终端回车:

    python detect.py --source datatest/6.jpg
    
  • Check your result image in the resultsave folder.

  • 看看 resultsave 文件夹里保存的推理结果

  • Type in the terminal:

  • 复制到终端回车:

    python detect.py --source video --videofile datatest/21115-315137069_small.mp4
    python detect.py --source video --videofile datatest/2174-155747455_small.mp4
    
  • The First example video owned by Jahhoo

  • The Second example video owned by RafterJr72

  • 以上示例视频由这两位作者分别所拥有

  • Check the detect result through the new window created by opencv

  • 通过opencv打开的视频流窗口查看推理结果

  • Click "q" to end the detect process.

  • 按“q”键终止推理进程

CameraStream摄像头实时流

  • Choose your own camera index then type in terminal:

  • 选好摄像头的编号复制到终端回车:

    python detect.py
    
  • or use your own camera index:

  • 不然就在下面的命令后边打上摄像头在系统中的序号,Windows是设备管理器,Linux可以用v4l2-ctl:

    python detect.py --source {your camera index, it usual in integer type}
    
  • Check the detect result through the new window created by opencv

  • 通过opencv打开的视频流窗口查看推理结果

  • Click "q" to end the detect process.

  • 按“q”键终止推理进程

Picture图片

  • Type in the terminal:

  • 复制到终端回车:

    python detect.py --source {your Picturefilepath}
    
  • Check your result image in the resultsave folder.

  • 看看 resultsave 文件夹里保存的推理结果

VideoStream视频文件流

  • Type in the terminal:

  • 复制到终端回车:

    python detect.py --source video --videofile {your videofilepath}
    
  • Check the detect result through the new window created by opencv

  • 通过opencv打开的视频流窗口查看推理结果

  • Click "q" to end the detect process.

  • 按“q”键终止推理进程

Todo待完成

  • Save the VideoStream detection result as a file
  • 以文件形式保存视频流推理结果
  • Write an UI to adapt most usage
  • 写一个能适用于大多数场景需求的UI
  • Multi CPU core Inferences
  • 多核推理
  • Use ncnn Framework(almost done)
  • 使用ncnn来编译推理(接近完成,孩子原先的ncnn已经编译成功啦)

Reference引用