You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
i am using cpu with;
32G RAM & 32 CORE CPU & WINDOWS OS
when the code start this line ; net = caffe.Net(model_def_file, model_file, caffe.TEST)
the python has stopped working .
the code is ;
import sys
import time
import getopt
import os
import numpy as np
from PIL import Image as PILImage
""" Returns the segmentation of the given image.
Args:
model_def_file: File path of the Caffe model definition prototxt file
model_file: File path of the trained model file (contains trained weights)
gpu_device: ID of the GPU device. If using the CPU, set this to -1
inputs: List of images to be segmented
Returns:
The segmented image
"""
assert os.path.isfile(model_def_file), "File {} is missing".format(model_def_file)
assert os.path.isfile(model_file), ("File {} is missing. Please download it using "
"./download_trained_model.sh").format(model_file)
if gpu_device >= 0:
caffe.set_device(gpu_device)
caffe.set_mode_gpu()
else:
caffe.set_mode_cpu()
print (_CAFFE_ROOT)
net = caffe.Net(model_def_file, model_file, caffe.TEST)
num_images = len(inputs)
num_channels = inputs[0].shape[2]
assert num_channels == 3, "Unexpected channel count. A 3-channel RGB image is exptected."
caffe_in = np.zeros((num_images, num_channels, _MAX_DIM, _MAX_DIM), dtype=np.float32)
for ix, in_ in enumerate(inputs):
caffe_in[ix] = in_.transpose((2, 0, 1))
start_time = time.time()
out = net.forward_all(**{net.inputs[0]: caffe_in})
end_time = time.time()
print("Time taken to run the network: {:.4f} seconds".format(end_time - start_time))
predictions = out[net.outputs[0]]
return predictions[0].argmax(axis=0).astype(np.uint8)
def run_crfrnn(input_file, output_file, gpu_device = -1):
""" Runs the CRF-RNN segmentation on the given RGB image and saves the segmentation mask.
Args:
input_file: Input RGB image file (e.g. in JPEG format)
output_file: Path to save the resulting segmentation in PNG format
gpu_device: ID of the GPU device. If using the CPU, set this to -1
"""
input_image = 255 * caffe.io.load_image(input_file)
input_image = resize_image(input_image)
image = PILImage.fromarray(np.uint8(input_image))
image = np.array(image)
palette = get_palette(256)
#PIL reads image in the form of RGB, while cv2 reads image in the form of BGR, mean_vec = [R,G,B]
mean_vec = np.array([123.68, 116.779, 103.939], dtype=np.float32)
mean_vec = mean_vec.reshape(1, 1, 3)
# Rearrange channels to form BGR
im = image[:, :, ::-1]
# Subtract mean
im = im - mean_vec
# Pad as necessary
cur_h, cur_w, cur_c = im.shape
pad_h = _MAX_DIM - cur_h
pad_w = _MAX_DIM - cur_w
im = np.pad(im, pad_width=((0, pad_h), (0, pad_w), (0, 0)), mode='constant', constant_values=0)
# Get predictions
segmentation = crfrnn_segmenter(_MODEL_DEF_FILE, _MODEL_FILE, gpu_device, [im])
segmentation = segmentation[0:cur_h, 0:cur_w]
output_im = PILImage.fromarray(segmentation)
output_im.putpalette(palette)
output_im.save(output_file)
def resize_image(image):
""" Resizes the image so that the largest dimension is not larger than 500 pixels.
If the image's largest dimension is already less than 500, no changes are made.
Args:
Input image
Returns:
Resized image where the largest dimension is less than 500 pixels
"""
width, height = image.shape[0], image.shape[1]
max_dim = max(width, height)
if max_dim > _MAX_DIM:
if height > width:
ratio = float(_MAX_DIM) / height
else:
ratio = float(_MAX_DIM) / width
image = PILImage.fromarray(np.uint8(image))
image = image.resize((int(height * ratio), int(width * ratio)), resample=PILImage.BILINEAR)
image = np.array(image)
return image
def main(argv):
""" Main entry point to the program. """
input_file = "C:/cnn/crfasrnn_caffe/python-scripts/input.jpg"
output_file = 'C:\cnn\crfasrnn_caffe\python-scripts'
gpu_device = -1 # Use -1 to run only on the CPU, use 0-3[7] to run on the GPU
try:
opts, args = getopt.getopt(argv, 'hi:o:g:', ["ifile=", "ofile=", "gpu="])
except getopt.GetoptError:
print("crfasrnn_demo.py -i <input_file> -o <output_file> -g <gpu_device>")
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print("crfasrnn_demo.py -i <inputfile> -o <outputfile> -g <gpu_device>")
sys.exit()
elif opt in ("-i", "ifile"):
input_file = arg
elif opt in ("-o", "ofile"):
output_file = arg
elif opt in ("-g", "gpudevice"):
gpu_device = int(arg)
print("Input file: {}".format(input_file))
print("Output file: {}".format(output_file))
if gpu_device >= 0:
print("GPU device ID: {}".format(gpu_device))
else:
print("Using the CPU (set parameters appropriately to use the GPU)")
run_crfrnn(input_file, output_file, gpu_device= -1)
if name == "main":
main(sys.argv[1:])
The text was updated successfully, but these errors were encountered:
This is what the code is trying to execute:
Net('TVG_CRFRNN_new_deploy.prototxt', 1, weights='TVG_CRFRNN_COCO_VOC.caffemodel')
This is the error message:
Error parsing text-format caffe.NetParameter: 619:31: Message type "caffe.LayerParameter" has no field named "multi_stage_meanfield_param".
F0207 06:27:00.273581 11944 upgrade_proto.cpp:88] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: TVG_CRFRNN_new_deploy.prototxt
Apparently, the model definitions (specified as: TVG_CRFRNN_new_deploy.prototxt) do not match with the pre-trained weight network format (in: TVG_CRFRNN_COCO_VOC.caffemodel) and that's why the error. It can't read the final layer.
Not sure what has happened. From my reading over various sites, this is possible due to that the Caffe Windows does not support RNN. I am going to try this in Linux or Mac to see if it works.
I did try to remove the last layer in the TVG_CRFRNN_new_deploy.prototxt. It did work without error but the results looked quite funny.
i am using cpu with;
32G RAM & 32 CORE CPU & WINDOWS OS
when the code start this line ; net = caffe.Net(model_def_file, model_file, caffe.TEST)
the python has stopped working .
the code is ;
import sys
import time
import getopt
import os
import numpy as np
from PIL import Image as PILImage
Path of the Caffe installation.
_CAFFE_ROOT = "C:\Program Files\python3.5\python-3.5.3.amd64\Lib\site-packages\caffe"
Model definition and model file paths
_MODEL_DEF_FILE = 'C:/cnn/crfasrnn_caffe/python-scripts/TVG_CRFRNN_new_deploy.prototxt' # Contains the network definition
_MODEL_FILE = 'C:/cnn/crfasrnn_caffe/python-scripts/TVG_CRFRNN_COCO_VOC.caffemodel' # Contains the trained weights. Download from http://goo.gl/j7PrPZ
sys.path.insert(0, _CAFFE_ROOT + "python")
import caffe
_MAX_DIM = 100
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
def crfrnn_segmenter(model_def_file, model_file, gpu_device, inputs):
def run_crfrnn(input_file, output_file, gpu_device = -1):
""" Runs the CRF-RNN segmentation on the given RGB image and saves the segmentation mask.
def resize_image(image):
""" Resizes the image so that the largest dimension is not larger than 500 pixels.
If the image's largest dimension is already less than 500, no changes are made.
def main(argv):
""" Main entry point to the program. """
if name == "main":
main(sys.argv[1:])
The text was updated successfully, but these errors were encountered: