-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdraw.py
executable file
·246 lines (208 loc) · 8.98 KB
/
draw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/usr/bin/env python
import glob
import os
import pickle
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import requests
import gpxpy
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import numpy as np
from sklearn.cluster import DBSCAN
import osm
# TODO: move to argparse
use_osm = True
osm_color = "salmon"
osm_line_width = .1
osm_alpha = .5
def plot(data, background_color, line_width, line_color, line_alpha, dpi, label=0):
if line_color.startswith("cmap:"):
use_cmap = True
max_elev = max([max(d["elevs"]) for d in data])
min_elev = min([min(d["elevs"]) for d in data])
norm = plt.Normalize(min_elev, max_elev)
print(f"> min elevation: {min_elev}, max elevation: {max_elev}")
line_color = line_color[5:]
elif line_color.startswith("lcmap:"):
use_cmap = True
norm = None
line_color = line_color[6:]
else:
use_cmap = False
fig = plt.figure(facecolor=background_color)
ax = fig.add_subplot(111)
if use_cmap:
for i, ds in enumerate(data, 1):
print(f"> plotting ({i}/{len(data)})", end="\r")
lons = ds["lons"]
lats = ds["lats"]
if use_cmap:
elevs = np.array(ds["elevs"])
points = np.array([lons, lats]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
lc = LineCollection(segments, cmap=plt.get_cmap(line_color),
alpha=line_alpha, norm=norm)
lc.set_array(elevs)
lc.set_linewidth(line_width)
ax.add_collection(lc)
else:
segments = [[(lon, lat) for lon, lat in zip(d["lons"], d["lats"])] for d in data]
lc = LineCollection(segments, colors=line_color, alpha=line_alpha)
lc.set_linewidth(line_width)
ax.add_collection(lc)
ax.autoscale()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
aspect_ratio = (ylim[1] - ylim[0]) / (xlim[1] - xlim[0])
print(f"> bounding box=[{xlim[0]:.4f}, {ylim[0]:.4f}] x [{xlim[1]:.4f}, {ylim[1]:.4f}], "
f"aspect ratio={aspect_ratio:.4f}")
# add paths from open street map
if use_osm:
print("adding osm data")
osm_id = osm.osm_id(xlim[0], ylim[0], xlim[1], ylim[1])
osm_file = f"map_{osm_id}.osm"
segments_file = f"segments_{osm_id}.pkl"
print(f"looking for {segments_file}")
if not os.path.exists(segments_file):
print(f"looking for {osm_file}")
if not os.path.exists(osm_file):
osm.download_osm(osm_file, xlim[0], ylim[0], xlim[1], ylim[1])
else:
print("> found")
segments = osm.parse_osm(osm_file)
with open(segments_file, "wb") as f:
pickle.dump(segments, f)
else:
print("> found")
with open(segments_file, "rb") as f:
segments = pickle.load(f)
lc = LineCollection(segments, colors=osm_color, alpha=osm_alpha)
lc.set_linewidth(osm_line_width)
ax.add_collection(lc)
ax.set_aspect(aspect_ratio)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.set_facecolor(background_color)
for spine in ax.spines.values():
spine.set_edgecolor(background_color)
#ax.axis("off")
#plt.show()
fig.savefig(f"figure_label_{label}.png", facecolor=fig.get_facecolor(),
edgecolor="none", dpi=dpi)
plt.close(fig)
print()
def load_gpx(files, data=None):
if data is None:
data = dict(tracks=[])
for i, path in enumerate(files, 1):
print(f"loading {100*i/len(files):.2f}%: ({i}/{len(files)})", end="\r")
with open(path, "r") as f:
gpx = gpxpy.parse(f)
track = gpx.tracks[0]
segment = track.segments[0]
data["tracks"].append({
"lats": np.array([p.latitude for p in segment.points]),
"lons": np.array([p.longitude for p in segment.points]),
"elevs": np.array([p.elevation for p in segment.points]),
"type": int(track.type),
"name": track.name,
"date": gpx.time,
"filename": os.path.basename(path)
})
print(f"loaded {len(data)} file(s)")
file_set = set(os.path.basename(f) for f in files)
if "files" in data:
data["files"] = data["files"] | file_set
else:
data["files"] = file_set
return data
def add_shared_args(parser):
parser.add_argument("--background-color", type=str, default="antiquewhite",
help="background color of image")
parser.add_argument("--line-color", type=str, default="darkturquoise",
help="line color of tracks")
parser.add_argument("--line-width", type=float, default=.15,
help="line width of tracks")
parser.add_argument("--line-alpha", type=float, default=.8,
help="line alpha (transparency) of tracks")
parser.add_argument("--dpi", type=int, default=2000,
help="image quality (dots per inch)")
parser.add_argument("--radius", type=float, default=.05,
help="radius in units of degrees for filtering")
parser.add_argument("--reduction",
choices=["start", "average", "start_stop_average"],
default="average",
help="method to get a single lat/lon from a track when filtering")
parser.add_argument("--activity-type", type=int,
help="if defined only include this activity type")
parser.add_argument("--gpx-dir", default="strava",
help="directory with gpx files")
parser = ArgumentParser()
subparsers = parser.add_subparsers(dest="type")
cluster_parser = subparsers.add_parser("cluster", formatter_class=ArgumentDefaultsHelpFormatter)
cluster_parser.add_argument("--min-cluster-size", type=int, default=10,
help="minimum number of tracks to create a cluster")
add_shared_args(cluster_parser)
coords_parser = subparsers.add_parser("coords", formatter_class=ArgumentDefaultsHelpFormatter)
coords_parser.add_argument("--lat", type=float, help="center latitude", required=True)
coords_parser.add_argument("--lon", type=float, help="center longitude", required=True)
add_shared_args(coords_parser)
find_me_parser = subparsers.add_parser("here", formatter_class=ArgumentDefaultsHelpFormatter)
add_shared_args(find_me_parser)
all_tracks_parser = subparsers.add_parser("all", formatter_class=ArgumentDefaultsHelpFormatter)
add_shared_args(all_tracks_parser)
args = parser.parse_args()
plot_keys = ["background_color", "line_color", "line_width", "line_alpha", "dpi"]
plot_args = {k: getattr(args, k) for k in plot_keys}
cache_path = os.path.join(args.gpx_dir, "cache.pkl")
files = glob.glob(os.path.join(args.gpx_dir, "*.gpx"))
if os.path.exists(cache_path):
print(f"found cache at {cache_path}")
with open(cache_path, "rb") as f:
data = pickle.load(f)
new_files = data["files"] ^ set([os.path.basename(f) for f in files])
if len(new_files) > 0:
print(f"updating cache file {cache_path}")
dirname = os.path.dirname(files[0])
data = load_gpx([os.path.join(dirname, f) for f in new_files], data)
with open(cache_path, "wb") as f:
pickle.dump(data, f)
else:
data = load_gpx(files)
print(f"saving cache to {cache_path}")
with open(cache_path, "wb") as f:
pickle.dump(data, f)
if args.activity_type is not None:
data = np.array([d for d in data["tracks"] if d["type"] == args.activity_type])
else:
data = np.array(data["tracks"])
if args.reduction == "average":
coords = np.array([[np.average(d["lats"]), np.average(d["lons"])] for d in data])
elif args.reduction == "start_stop_average":
coords = np.array([[np.average(d["lats"][[0, -1]]), np.average(d["lons"][[0, -1]])] for d in data])
elif args.reduction == "start":
coords = np.array([[np.average(d["lats"][0]), np.average(d["lons"][0])] for d in data])
if args.type == "cluster":
cluster = DBSCAN(eps=args.radius, min_samples=10)
cluster.fit(coords)
n_clusters = np.max(cluster.labels_) + 1
centroids = [np.mean(coords[cluster.labels_ == l], axis=0) for l in range(n_clusters)]
print(f"found {n_clusters} clusters, {np.sum(cluster.labels_ == -1)} tracks unclassified")
for label in range(n_clusters):
label_data = data[cluster.labels_ == label]
print(f"plotting cluster {label+1}/{n_clusters}: {len(label_data)} tracks")
plot(label_data, **plot_args, label=label)
elif args.type == "coords" or args.type == "here":
if args.type == "here":
resp = requests.get("https://geo.risk3sixty.com/me")
obj = resp.json()
print(f"looks like you're near {obj['city']}")
args.lat = obj["ll"][0]
args.lon = obj["ll"][1]
filtered = [d for d,c in zip(data, coords) if np.sqrt(
(c[0] - args.lat)**2 + (c[1] - args.lon)**2) <= args.radius]
print(f"plotting {len(filtered)} tracks around {args.lat:.4f}, {args.lon:.4f}")
plot(filtered, **plot_args)
else:
print(f"plotting all tracks")
plot(data, **plot_args)