forked from EastEriq/phaseFieldFoam-6
-
Notifications
You must be signed in to change notification settings - Fork 1
/
phaseFieldFoam.C
215 lines (167 loc) · 6.26 KB
/
phaseFieldFoam.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2005 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
phaseFieldFoam
Description
Phase field solver based on work by Takada. This solver uses the
Cahn-Hilliard equation and the Navier-Stokes coupling for the
calculation of the phase field for two immiscible fluids by
diffusive and advective transport mechanisms.
Written by:
Donaldson, Adam: Dalhousie University Halifax, Canada
Ported to OpenFOAM version 2.2.0:
Weiss, Sebastian: TU Bergakademie Freiberg, Germany
Ported to OpenFOAM version 6 20181221:
Enrico Segre, Weizmann Institute, Israel
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "interfaceProperties.H"
#include "incompressibleTwoPhaseMixture.H"
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "fvOptionList.H"
#include "CorrectPhi.H"
#include "fixedFluxPressureFvPatchScalarField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "initContinuityErrs.H"
pimpleControl pimple(mesh);
#include "createControls.H"
#include "createFields.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
volScalarField rAU
(
IOobject
(
"rAU",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1.0)
);
#include "correctPhi.H"
#include "createUf.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
bool t = true;
bool b = true;
//-Obtain a list of all boundaries on the mesh
const fvPatchList& patches = mesh.boundary();
int N = static_cast<int> (patches.size());
scalar boundaryMin[N];
bool boundaryMin_t[N];
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "createControls.H"
if (t && (runTime.value()<=runTime.deltaTValue()))
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
//-Adjust time step for preCPhaseFieldFoam
runTime.setDeltaT(deltaTZero);
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
//---------------------------------------------------//
//-Common part of phaseFieldFoam and preCPhaseFieldFoam
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
{
// Calculate the relative velocity used to map the relative flux phi
volVectorField Urel("Urel", U);
if (mesh.moving())
{
Urel -= fvc::reconstruct(fvc::meshPhi(U));
}
// Do any mesh changes
mesh.update();
}
if (mesh.changing())
{
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
gh = (g& mesh.C()) - ghRef;
ghf = (g& mesh.Cf()) - ghRef;
}
if (mesh.changing() && correctPhi)
{
//-Calculate absolute flux from the mapped surface velocity
phi = mesh.Sf() & Uf;
//-Make the flux relative to the mesh motion
fvc::makeRelative(phi, U);
#include "correctPhi.H"
}
if (mesh.changing() && checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
//---------------------------------------------------//
if (t && (runTime.value()<=runTime.deltaTValue()))
{
Info<< nl << "Running pre-conditioner:" << nl << endl;
t = false;
#include "preConditioner.H"
}
else
{
//-After the first time step run the pressure & U loop
if (b)
{
Info<< nl << "Running phase field calculation:" << nl << endl;
b = false;
}
#include "alphaEqnSubCycle.H"
//- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEqn.H"
//- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
}
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //