-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathagent.py
64 lines (52 loc) · 2.1 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
from collections import defaultdict
class Agent:
def __init__(self, nA=6):
""" Initialize agent.
Params
======
- nA: number of actions available to the agent
"""
self.i_episode = 1
self.alpha = .01
self.gamma = 1.0
self.nA = nA
self.Q = defaultdict(lambda: np.zeros(self.nA))
def epsilon_greedy_probs(self, Q_s, eps=None):
""" obtains the action probabilities corresponding to epsilon-greedy policy """
epsilon = 1.0 / self.i_episode
if eps is not None:
epsilon = eps
policy_s = np.ones(self.nA) * epsilon / self.nA
policy_s[np.argmax(Q_s)] = 1 - epsilon + (epsilon / self.nA)
return policy_s
def update_Q(self, Qsa, Qsa_next, reward, alpha, gamma):
""" updates the action-value function estimate using the most recent time step """
return Qsa + (alpha * (reward + (gamma * Qsa_next) - Qsa))
def select_action(self, state):
""" Given the state, select an action.
Params
======
- state: the current state of the environment
Returns
=======
- action: an integer, compatible with the task's action space
"""
# get epsilon-greedy action probabilities
policy_s = self.epsilon_greedy_probs(self.Q[state])
# pick next action A
return np.random.choice(np.arange(self.nA), p=policy_s)
def step(self, state, action, reward, next_state, done):
""" Update the agent's knowledge, using the most recently sampled tuple.
Params
======
- state: the previous state of the environment
- action: the agent's previous choice of action
- reward: last reward received
- next_state: the current state of the environment
- done: whether the episode is complete (True or False)
"""
# update Q
self.Q[state][action] = self.update_Q(self.Q[state][action], np.max(self.Q[next_state]), reward, self.alpha,
self.gamma)
self.i_episode += 1