DeepClustering |
WSJ0-2mix |
model = DeepClustering.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
DeepClustering |
WSJ0-3mix |
model = DeepClustering.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
DANet |
WSJ0-2mix |
model = DANet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
DANet |
WSJ0-3mix |
model = DANet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
DANet (fixed attractor) |
WSJ0-2mix |
model = FixedAttractorDANet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
DANet (fixed attractor) |
WSJ0-3mix |
model = FixedAttractorDANet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
DANet |
LibriSpeech |
model = DANet.build_from_pretrained(task="librispeech", sample_rate=16000, n_sources=2) |
ADANet |
WSJ0-2mix |
model = ADANet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
ADANet |
WSJ0-3mix |
model = ADANet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
LSTM-TasNet |
WSJ0-2mix |
model = LSTMTasNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
LSTM-TasNet |
WSJ0-3mix |
model = LSTMTasNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
Conv-TasNet |
WSJ0-2mix |
model = ConvTasNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
Conv-TasNet |
WSJ0-3mix |
model = ConvTasNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
Conv-TasNet |
MUSDB18 |
model = ConvTasNet.build_from_pretrained(task="musdb18", sample_rate=44100) |
Conv-TasNet |
WHAM |
model = ConvTasNet.build_from_pretrained(task="wham/separate-noisy", sample_rate=8000) |
Conv-TasNet |
WHAM |
model = ConvTasNet.build_from_pretrained(task="wham/enhance-single", sample_rate=8000) |
Conv-TasNet |
WHAM |
model = ConvTasNet.build_from_pretrained(task="wham/enhance-both", sample_rate=8000) |
Conv-TasNet |
LibriSpeech |
model = ConvTasNet.build_from_pretrained(task="librispeech", sample_rate=16000, n_sources=2) |
DPRNN-TasNet |
WSJ0-2mix |
model = DPRNNTasNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
DPRNN-TasNet |
WSJ0-3mix |
model = DPRNNTasNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
DPRNN-TasNet |
LibriSpeech |
model = DPRNNTasNet.build_from_pretrained(task="librispeech", sample_rate=16000, n_sources=2) |
MMDenseLSTM |
MUSDB18 |
model = MMDenseLSTM.build_from_pretrained(task="musdb18", sample_rate=44100, target="vocals") |
MMDenseLSTM (bass, drums, other, vocals) |
MUSDB18 |
model = ParallelMMDenseLSTM.build_from_pretrained(task="musdb18", sample_rate=44100) |
Open-Unmix |
MUSDB18 |
model = OpenUnmix.build_from_pretrained(task="musdb18", sample_rate=44100, target="vocals") |
Open-Unmix (bass, drums, other, vocals) |
MUSDB18 |
model = ParallelOpenUnmix.build_from_pretrained(task="musdb18", sample_rate=44100) |
Open-Unmix |
MUSDB18-HQ |
model = OpenUnmix.build_from_pretrained(task="musdb18hq", sample_rate=44100, target="vocals") |
Open-Unmix (bass, drums, other, vocals) |
MUSDB18-HQ |
model = ParallelOpenUnmix.build_from_pretrained(task="musdb18hq", sample_rate=44100) |
DPTNet |
WSJ0-2mix |
model = DPTNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
DPTNet |
WSJ0-3mix |
model = DPTNet.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |
CrossNet-Open-Unmix |
MUSDB18 |
model = CrossNetOpenUnmix.build_from_pretrained(task="musdb18", sample_rate=44100) |
D3Net |
MUSDB18 |
model = D3Net.build_from_pretrained(task="musdb18", sample_rate=44100, target="vocals") |
D3Net (bass, drums, other, vocals) |
MUSDB18 |
model = ParallelD3Net.build_from_pretrained(task="musdb18", sample_rate=44100) |
D3Net |
MUSDB18-HQ |
model = D3Net.build_from_pretrained(task="musdb18hq", sample_rate=44100, target="vocals") |
D3Net (bass, drums, other, vocals) |
MUSDB18-HQ |
model = ParallelD3Net.build_from_pretrained(task="musdb18hq", sample_rate=44100) |
SepFormer |
WSJ0-2mix |
model = SepFormer.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=2) |
SepFormer |
WSJ0-3mix |
model = SepFormer.build_from_pretrained(task="wsj0-mix", sample_rate=8000, n_sources=3) |