-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_functions.jl
69 lines (59 loc) · 2.72 KB
/
plot_functions.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
using CairoMakie, ColorSchemes
# convenience function
function quants_from_rates(f, ts, var; quantiles = [0.025, 0.5, 0.975])
rate_est = f.(ts, eachrow(var)')
reduce(hcat, quantile.(eachrow(rate_est), Ref(quantiles)))
end
function plot_species_mean!(ax, ts, tempmin, tempmax, chain, f; color = :black, linewidth = 3, transparency = 0.2, quantiles = [0.025, 0.5, 0.975], kw...)
var_sp = Array(group(chain, :var_sp))
sp_quants = quants_from_rates(f.defaults.f, ts, var_sp; quantiles = quantiles)
ts_C = ts .- 273.15
band!(ax, ts_C[tempmin:tempmax], sp_quants[1, tempmin:tempmax], sp_quants[3, tempmin:tempmax]; color = (color, transparency))
lines!(ax, ts_C[101:301], sp_quants[2, 101:301]; color, linewidth, kw...)
lines!(ax, ts_C[1:tempmin], sp_quants[2, 1:tempmin]; color, linewidth, linestyle = :dash)
lines!(ax, ts_C[301:end], sp_quants[2, 301:end]; color, linewidth, linestyle = :dash)
return maximum(sp_quants[3, :])
end
# main function
function plot_chain!(
ax, metad, f, mychn, gq;
n_params, cols = ColorSchemes.Dark2_4,
quantiles = [0.025, 0.5, 0.975]
)
ts_C = 0:0.1:50
ts = ts_C .+ 273.15
n_indiv = size(metad)[1]
var_co = Array(group(mychn, :var_co))
rate_indiv = map(1:n_indiv) do i
map(vec(gq)) do g
g.rate_indiv[i]
end
end
qrate_indiv = mapreduce(x -> quantile(x, quantiles), hcat, rate_indiv)
ncol = Int(size(var_co)[2] / n_params)
# plot each colony
sp_quants = map(1:ncol) do i
quants_from_rates(f.defaults.f, ts, var_co[:, (i*n_params - (n_params - 1)): i*n_params])
end
# lowest/highest temperature where there is any growth
tempmin = max(min(minimum(map(s -> findfirst(s[2,:] .> 0.01), sp_quants)) - 5, 80), 1)
tempmax = min(max(maximum(map(s -> findlast(s[2,:] .> 0.01), sp_quants)) + 5, 320), 501)
for i in 1:ncol
col = cols[i]
lines!(ax, ts_C[101:301], sp_quants[i][2, 101:301], color = col)
lines!(ax, ts_C[1:101], sp_quants[i][2, 1:101], color = col, linestyle = :dash)
lines!(ax, ts_C[301:end], sp_quants[i][2, 301:end], color = col, linestyle = :dash)
end
xlims!(ax, ts_C[tempmin], ts_C[tempmax])
# plot the central estimate
upperlimit = plot_species_mean!(ax, ts, tempmin, tempmax, mychn, f)
# Plot individual replicates as points
xoffsets = rand(-0.5:0.001:0.5, n_indiv)
Makie.scatter!(ax, metad[:, :temperature] .+ xoffsets, qrate_indiv[2, :], color = cols[metad[:, :colony_id]])
Makie.errorbars!(
ax, metad[:, :temperature] .+ xoffsets,
qrate_indiv[2, :] , qrate_indiv[2, :] .- qrate_indiv[1, :], qrate_indiv[3, :] .- qrate_indiv[2, :],
color = cols[metad[:, :colony_id]]
)
return upperlimit
end