-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayesian_model.jl
99 lines (78 loc) · 3.74 KB
/
bayesian_model.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
include("response_functions.jl")
## Import some packages
using Turing, Distributions, StatsBase, ReverseDiff
@model function func_one_species(
time, obs, temperatures, temp_id, col_id, id,
n = maximum(id), ncol = maximum(col_id);
f, prior_mus, prior_std, n_params = size(prior_mus)[1], dist = MvNormal
)
# hyperparameters
sigma ~ Exponential(1)
indiv_std ~ Exponential(1) #prior on variation between individuals within a colony
col_std ~ filldist(Exponential(1), n_params) #prior on varation between colonies
# Species level
var_sp ~ dist(prior_mus, prior_std)
# Colony level
var_co ~ filldist(dist(var_sp, col_std), ncol)
Turing.@addlogprob! (added_logpdf(f, var_sp)) # to prevent invalid species means
# rates for each temperature and each colony
est_replicates = f.(temperatures, eachcol(var_co)')
log_est_replicates = NaNMath.log.(est_replicates)
# individual level
est_indiv = map((t, c) -> getindex(log_est_replicates, t, c), temp_id, col_id)
rate_indiv ~ MvLogNormal(est_indiv, indiv_std)
intercept ~ filldist(Normal(0.2725, 0.2), n) # size at time 0
# sampling
length_estimate = (rate_indiv[id] .* time .+ intercept[id])
obs ~ MvNormal(length_estimate, sigma)
return (; rate_indiv, est_replicates)
end
# The exact same model as above, but with sampling in a loop instead of with MvNormal.
# This is much slower, but observations appear independent (which they are), which is needed for estiamting model performance
@model function func_one_species_indep(
time, obs, temperatures, temp_id, col_id, id,
n = maximum(id), ncol = maximum(col_id);
f, prior_mus, prior_std, n_params = size(prior_mus)[1], dist = MvNormal
)
# hyperparameters
sigma ~ Exponential(1)
indiv_std ~ Exponential(1) #prior on variation between individuals within a colony
col_std ~ filldist(Exponential(1), n_params) #prior on varation between colonies
# Species level
var_sp ~ dist(prior_mus, prior_std)
# Colony level
var_co ~ filldist(dist(var_sp, col_std), ncol)
Turing.@addlogprob! (added_logpdf(f, var_sp)) # to prevent invalid species means
# rates for each temperature and each colony
est_replicates = f.(temperatures, eachcol(var_co)')
log_est_replicates = NaNMath.log.(est_replicates)
# individual level
est_indiv = map((t, c) -> getindex(log_est_replicates, t, c), temp_id, col_id)
rate_indiv ~ MvLogNormal(est_indiv, indiv_std)
intercept ~ filldist(Normal(0.2725, 0.2), n) # size at time 0
# sampling
length_estimate = (rate_indiv[id] .* time .+ intercept[id])
obs .~ Normal.(length_estimate, sigma)
#for i in 1:n
# bv = id .== i
# obs[bv] ~ MvNormal(length_estimate[bv], sigma)
#end
return (; rate_indiv, est_replicates)
end
# Select models and priors
prior_topt = 25 + 273.15
models = [
(f = gaussian_from_log_v, shortname = "Gaussian", prior_mus = [prior_topt, -2.5, 2.], prior_std = [5, 1., 1.], adbackend = AutoReverseDiff(true)),
(f = mod_gaussian_from_log_v, shortname = "Modified Gaussian", prior_mus = [prior_topt, -2.5, 2., 0.7], prior_std = [5, 1., 1., 0.5], adbackend = AutoReverseDiff(true)),
(f = weibull_from_logv, shortname = "Weibull", prior_mus = [prior_topt, -2.5, 4, -1], prior_std = [5, 1., 2., 2.], adbackend = AutoReverseDiff(false)),
(f = deutsch_from_logv, shortname = "Deutsch", prior_mus = [prior_topt, prior_topt+7, -2.5, 1.], prior_std = [5., 3., 0.5, 1.], adbackend = AutoReverseDiff(false)),
]
# some tools
rhat_deviation(chain) = abs.(1 .- rhat(chain).nt[2])
# Some convergence check, to be improved
function converged(chain)
absrh = rhat_deviation(chain)
if mean(absrh) > 0.02 return false end
if maximum(absrh) > 0.1 return false end
return true
end