-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_sampling.jl
39 lines (34 loc) · 1.08 KB
/
01_sampling.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
include("data.jl")
include("bayesian_model.jl")
using ThreadsX, Random, Serialization
# Run once, make directories
for model in models
dir = "chains/$(model.shortname)"
if !isdir(dir)
mkdir(dir)
end
for s in species
dir = "chains/$(model.shortname)/$s"
if !isdir(dir)
mkdir(dir)
end
end
end
chains = ThreadsX.map(models) do model
println("starting on model $(model.shortname)")
# Run the models
ThreadsX.map(zip(ds, metads, species)) do (d, metad, sp)
# model function with data
f = func_one_species(
d.time, d.length, temperatures_K, metad.temperature_id, metad.colony_id, d.id;
f = model.f, prior_mus = model.prior_mus, prior_std = model.prior_std, dist = MvNormal
)
# Sample the posterior
chn = sample(Xoshiro(1234), f, NUTS(; adtype = model.adbackend), MCMCThreads(), 2000, 5)
# Save the chain
open("chains/$(model.shortname)/$(sp).jls", "w") do f
serialize(f, chn)
end
return chn
end
end