-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathboot_and_match_examples.R
234 lines (181 loc) · 6.17 KB
/
boot_and_match_examples.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
##########################################
## visualizing genes and other features ##
##########################################
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(org.Hs.eg.db)
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
g <- genes(txdb)
# add symbols to genes
suppressPackageStartupMessages(library(plyranges))
g <- g %>%
mutate(symbol = mapIds(org.Hs.eg.db, gene_id,
"SYMBOL", "ENTREZID"))
# for visualizing, restrict to a range of chr4
chrom <- "chr4"
rng <- c(98.8e6, 99.8e6) # where we will zoom into, 1 Mb
rng_big <- c(90e6, 110e6) # where features live, 20 Mb
# filtering the genes to this range
r <- data.frame(seqnames=chrom, start=rng[1]+1, end=rng[2]) %>%
as_granges()
# just look at the genes in this small range
g <- g %>%
filter_by_overlaps(r) %>%
sort() %>%
arrange(strand)
source("boot_and_match_script.R")
suppressPackageStartupMessages(library(plotgardener))
plotSomeGenes(chrom, rng, showGuides=FALSE)
# make n features in clumps of ~lambda
seqlens <- seqlengths(g)[chrom]
set.seed(5)
p <- makeClusterRanges(chrom, rng_big, n=300, lambda=5, seqlens)
# define some plotting parameters for plotgardener,
# e.g. a palette for feature 'score':
pal <- colorRampPalette(c("dodgerblue2", "firebrick2"))
# shared genomic location, width & height, x position, fill, etc.
params <- pgParams(
chrom=chrom, chromstart=rng[1], chromend=rng[2],
width=5.5, height=1, x=.25,
fill=colorby("score", palette=pal),
order="random", baseline=TRUE,
)
# shared parameters for text labels
textparams <- pgParams(x=.1, rot=90, just="left")
# plot the original GRanges, e.g. suppose ATAC-seq peaks
plotRanges(p, params=params, y=2)
plotText("original", params=textparams, y=3)
# uniform shuffling
shuf <- shuffle(p, rng_big)
# plot shuffled ranges
plotRanges(shuf, params=params, y=1)
plotText("shuffled", params=textparams, y=2)
# segmented block bootstrapping
# blocks 100kb, not proportion to segment length
library(nullranges)
seg <- makeSegmentation(chrom, rng_big, seqlens)
set.seed(1)
boot <- bootRanges(p, blockLength=1e5, R=1,
seg=seg, proportionLength=FALSE)
# plot bootstrapped ranges
plotRanges(boot, params=params, y=0)
plotText("boot", params=textparams, y=1)
# for genome-wide analysis, consider excluding gaps, repeats, etc.
# see https://dozmorovlab.github.io/excluderanges for details
#library(AnnotationHub)
#ah <- AnnotationHub()
#query(ah, "excluderanges")
###########################
## bootstrapping example ##
###########################
# first just counts as statistic
g %>%
mutate(n_overlaps = count_overlaps(., p))
g %>%
join_overlap_left(p) %>%
group_by(symbol) %>%
summarize(n_overlaps = sum(!is.na(id)))
# working with metadata
g %>%
join_overlap_left(p) %>%
group_by(symbol) %>% # per gene symbol
summarize(sum_score = sum(score))
# simple violin plot
library(tibble)
library(ggplot2)
# inner instead of left: leaves out no-overlap genes
g %>%
join_overlap_inner(p) %>%
mutate(type = "original") %>%
group_by(symbol, type) %>%
summarize(sum_score = sum(score)) %>%
as_tibble() %>%
ggplot(aes(type, sum_score)) +
geom_violin() +
geom_point()
# adding more draws from the distribution for simulated features
niter <- 50
sim_list <- replicate(niter, {
makeClusterRanges(chrom, rng_big, n=300, lambda=5, seqlens)
})
sim_long <- bind_ranges(sim_list, .id="iter")
g %>%
join_overlap_inner(sim_long) %>%
mutate(type = "original") %>%
group_by(symbol, iter, type) %>%
summarize(sum_score = sum(score)) %>%
as_tibble() %>%
ggplot(aes(type, sum_score)) +
geom_violin() +
geom_jitter()
# shuffling and bootstrapping multiple times
shuf_list <- replicate(niter, shuffle(p, rng_big))
shuf_long <- bind_ranges(shuf_list, .id="iter")
boot_long <- bootRanges(p, blockLength=1e5, R=niter,
seg=seg, proportionLength=FALSE)
# bind together
lvls <- c("sim","shuffle","boot")
all <- bind_ranges(sim=sim_long, shuffle=shuf_long,
boot=boot_long, .id="type") %>%
mutate(type = factor(type, levels=lvls))
# show table of features per iteration
head(table(all$iter, all$type))
# final plot of distributions:
# multiple draws, shuffling one instance, bootstrapping one instances
g %>%
join_overlap_inner(all) %>%
group_by(symbol, iter, type) %>%
summarize(sum_score = sum(score)) %>%
as_tibble() %>%
ggplot(aes(type, sum_score)) +
geom_violin() +
geom_jitter(width=.25, alpha=.15)
######################
## matching example ##
######################
# start with gene plot again
plotSomeGenes(chrom, rng, showGuides=FALSE)
# make some features with particular distribution
# 1) near gene TSS, 2) tend to have large 'score' values
set.seed(1)
focal <- makeFocalFeatures(g, chrom, rng)
# 5 color palette for 'score'
pal <- colorRampPalette(c("blue","green","yellow","red"))
# new plot parameters
params <- pgParams(
chrom=chrom, chromstart=rng[1], chromend=rng[2],
width=5.5, height=1, x=.25,
fill=colorby("score", palette=pal, range=c(1,5)),
order="random", baseline=TRUE,
)
# plot the original 'focal' GRanges
plotRanges(focal, params=params, y=2)
plotText("focal", params=textparams, y=3)
# make a 'pool' of features to select from
pool <- makePool(5000, chrom, rng, seqlens)
# plot the pool (subset)
plotRanges(pool[1:200], params=params, y=1)
plotText("pool", params=textparams, y=2)
# add another feature: distance to nearest TSS
tss <- g %>% anchor_5p() %>% mutate(width=1)
both <- bind_ranges(focal = focal, pool = pool, .id="type") %>%
add_nearest_distance(tss) %>%
mutate(log10dist = log10(distance + 1000))
hist(both$log10dist)
m <- both %>% {
matchRanges(filter(., type=="focal"),
filter(., type=="pool"),
covar=~score + log10dist,
method="nearest", replace=TRUE)
}
library(patchwork)
plotCovariate(m, covar="score") +
plotCovariate(m, covar="log10dist")
# plot the matched set (need to replot the others)
set.seed(1)
plotSomeGenes(chrom, rng, showGuides=FALSE)
plotRanges(focal, params=params, y=2)
plotText("focal", params=textparams, y=3)
plotRanges(pool[1:200], params=params, y=1)
plotText("pool", params=textparams, y=2)
plotRanges(matched(m), params=params, y=0)
plotText("matched", params=textparams, y=1)