-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
223 lines (196 loc) · 10.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import torch
from exp.pretrain import Exp_Train, Exp_Pretrain_TimeSiam, Exp_Pretrain_PatchTST
import random
import numpy as np
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'
parser = argparse.ArgumentParser(description='TimeSiam')
parser.add_argument('--seed', type=int, default=2023, help='seed')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='in_domain', help='task name, options:[in_domain, cross_domain]')
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='PatchTST', help='model name, options: [PatchTST, iTransformer]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./datasets', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./outputs/checkpoints/', help='location of model checkpoints')
parser.add_argument('--pretrain_checkpoints', type=str, default='./outputs/pretrain_checkpoints/', help='location of model pre-training checkpoints')
parser.add_argument('--load_checkpoints', type=str, default=None, help='location of model checkpoints')
parser.add_argument('--select_channels', type=float, default=1, help='select the rate of channels to train')
parser.add_argument('--percent', type=int, default=100)
# forecasting task
parser.add_argument('--seq_len', type=int, default=336, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# anomaly detection task
parser.add_argument('--anomaly_ratio', type=float, default=0.40, help='prior anomaly ratio (%)')
# model define
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=3, help='for Inception')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false', help='whether to use distilling in encoder, using this argument means not using distilling', default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fully connected dropout')
parser.add_argument('--head_dropout', type=float, default=0.1, help='head dropout')
parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--individual', type=int, default=0, help='individual head; True 1 False 0')
parser.add_argument('--pct_start', type=float, default=0.3, help='pct_start')
# optimization
parser.add_argument('--num_workers', type=int, default=5, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=64, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0', help='device ids of multile gpus')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128], help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
# Pre-train
parser.add_argument('--lm', type=int, default=3, help='average masking length')
parser.add_argument('--positive_nums', type=int, default=3, help='masking nums')
parser.add_argument('--rbtp', type=int, default=1, help='0: rebuild the embedding of oral data; 1: rebuild oral data')
parser.add_argument('--temperature', type=float, default=0.02, help='temperature')
parser.add_argument('--masked_rule', type=str, default='channel_continuous', help='binomial, channel_binomial, continuous, channel_continuous, mask_last, mask_patch')
parser.add_argument('--window_gap', type=str, default=None, help='0 [0.5*seq, 1*seq], 1 [1*seq, 2*seq], 2 [2*seq, 4*seq], 3 [4*seq, 8*seq], default')
parser.add_argument('--finetune_ratio', type=float, default=None, help='finetune_ratio')
# PatchTST
parser.add_argument('--patch_len', type=int, default=12, help='path length')
parser.add_argument('--stride', type=int, default=12, help='stride')
# Siamese
parser.add_argument('--sampling_range', type=int, default=None, help='Siamese subseries sampling range: [0, sampling_range*seq_len]')
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
parser.add_argument('--lineage_tokens', type=int, default=2, help='the type numbers of lineage embeddings')
parser.add_argument('--tokens_using', type=str, default='single', help='single, flatten along time dimension')
parser.add_argument('--representation_using', type=str, default='avg', help='concat, avg')
parser.add_argument('--current_token', action='store_true', default=False, help='whether use current token')
# visual
parser.add_argument('--visual', type=int, default=0)
parser.add_argument('--visual_path', type=str, default='./outputs/showcases')
args = parser.parse_args()
print(torch.cuda.is_available())
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
fix_seed = args.seed
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
if args.task_name == 'timesiam':
Exp = Exp_Pretrain_TimeSiam
elif args.task_name == 'patchtst':
Exp = Exp_Pretrain_PatchTST
else:
Exp = Exp_Train
print(Exp)
if args.is_training == 0:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_{}_sl{}_ll{}_pl{}_dm{}_df{}_nh{}_el{}_dl{}_fc{}_dp{}_hdp{}_ep{}_bs{}_lr{}_lm{}_pn{}_mr{}_tp{}'.format(
args.task_name,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.d_ff,
args.n_heads,
args.e_layers,
args.d_layers,
args.factor,
args.dropout,
args.head_dropout,
args.train_epochs,
args.batch_size,
args.learning_rate,
args.lm,
args.positive_nums,
args.mask_rate,
args.temperature
)
exp = Exp(args) # set experiments
print('>>>>>>>start pre_training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.pretrain()
elif args.is_training == 1:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_{}_sl{}_ll{}_pl{}_dm{}_df{}_nh{}_el{}_dl{}_fc{}_dp{}_hdp{}_ep{}_bs{}_lr{}_ru{}'.format(
args.task_name,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.d_ff,
args.n_heads,
args.e_layers,
args.d_layers,
args.factor,
args.dropout,
args.head_dropout,
args.train_epochs,
args.batch_size,
args.learning_rate,
args.representation_using
)
exp = Exp(args) # set experiments
exp.fine_tune(setting)
else:
ii = 0
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()