-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
225 lines (174 loc) · 6.35 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import sys
import time
import torch
from typing import Optional, List
class CriterionWithLoss(torch.nn.Module):
def __init__(self, criterion):
super().__init__()
self.criterion = criterion
def forward(self, input, target):
input_real, losses = input[0], input[1:]
return self.criterion(input_real, target) + sum(losses)
class EarlyStopper(object):
def __init__(self, num_trials, save_paths):
self.num_trials = num_trials
self.trial_counter = 0
self.best_accuracy = 0
self.save_paths = save_paths
def is_continuable(self, models, accuracy):
if accuracy > self.best_accuracy:
self.best_accuracy = accuracy
self.trial_counter = 0
for model, save_path in zip(models, self.save_paths):
torch.save(model.state_dict(), save_path)
return True
elif self.trial_counter + 1 < self.num_trials:
self.trial_counter += 1
return True
else:
return False
class AverageMeter(object):
r"""Computes and stores the average and current value.
Examples::
>>> # Initialize a meter to record loss
>>> losses = AverageMeter()
>>> # Update meter after every minibatch update
>>> losses.update(loss_value, batch_size)
"""
def __init__(self, name: str, fmt: Optional[str] = ':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
if self.count > 0:
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class AverageMeterDict(object):
def __init__(self, names: List, fmt: Optional[str] = ':f'):
self.dict = {
name: AverageMeter(name, fmt) for name in names
}
def reset(self):
for meter in self.dict.values():
meter.reset()
def update(self, accuracies, n=1):
for name, acc in accuracies.items():
self.dict[name].update(acc, n)
def average(self):
return {
name: meter.avg for name, meter in self.dict.items()
}
def __getitem__(self, item):
return self.dict[item]
class Meter(object):
"""Computes and stores the current value."""
def __init__(self, name: str, fmt: Optional[str] = ':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
def update(self, val):
self.val = val
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '}'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
class TextLogger(object):
"""Writes stream output to external text file.
Args:
filename (str): the file to write stream output
stream: the stream to read from. Default: sys.stdout
"""
def __init__(self, filename, stream=sys.stdout):
self.terminal = stream
self.log = open(filename, 'a')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
self.flush()
def flush(self):
self.terminal.flush()
self.log.flush()
def close(self):
self.terminal.close()
self.log.close()
class CompleteLogger:
"""
A useful logger that
- writes outputs to files and displays them on the console at the same time.
- manages the directory of checkpoints and debugging images.
Args:
root (str): the root directory of logger
phase (str): the phase of training.
"""
def __init__(self, root, phase='train'):
self.root = root
self.phase = phase
self.visualize_directory = os.path.join(self.root, "visualize")
self.checkpoint_directory = os.path.join(self.root, "checkpoints")
self.epoch = 0
os.makedirs(self.root, exist_ok=True)
os.makedirs(self.visualize_directory, exist_ok=True)
os.makedirs(self.checkpoint_directory, exist_ok=True)
# redirect std out
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
log_filename = os.path.join(self.root, "{}-{}.txt".format(phase, now))
if os.path.exists(log_filename):
os.remove(log_filename)
self.logger = TextLogger(log_filename)
sys.stdout = self.logger
sys.stderr = self.logger
if phase != 'train':
self.set_epoch(phase)
def set_epoch(self, epoch):
"""Set the epoch number. Please use it during training."""
os.makedirs(os.path.join(self.visualize_directory, str(epoch)), exist_ok=True)
self.epoch = epoch
def _get_phase_or_epoch(self):
if self.phase == 'train':
return str(self.epoch)
else:
return self.phase
def get_image_path(self, filename: str):
"""
Get the full image path for a specific filename
"""
return os.path.join(self.visualize_directory, self._get_phase_or_epoch(), filename)
def get_checkpoint_path(self, name=None):
"""
Get the full checkpoint path.
Args:
name (optional): the filename (without file extension) to save checkpoint.
If None, when the phase is ``train``, checkpoint will be saved to ``{epoch}.pth``.
Otherwise, will be saved to ``{phase}.pth``.
"""
if name is None:
name = self._get_phase_or_epoch()
name = str(name)
return os.path.join(self.checkpoint_directory, name + ".pth")
def close(self):
self.logger.close()