-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathdataloader.py
121 lines (93 loc) · 3.85 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from utils import *
class dataset():
_vars = ("x0", "x1", "xc", "xw", "y0")
def __init__(self):
self.idx = None # input index
self.x0 = [] # text input, raw
self.x1 = [] # text input, tokenized
self.xc = [] # indexed input, character-level
self.xw = [] # indexed input, word-level
self.y0 = [] # actual output
self.y1 = None # predicted output
self.lens = None # sequence lengths (for HRE)
self.prob = None # output probabilities
self.attn = None # attention weights
self.copy = None # copy weights
def sort(self): # HRE = False
self.idx = list(range(len(self.xw)))
self.idx.sort(key = lambda x: -len(self.xw[x]))
xc = [self.xc[i] for i in self.idx]
xw = [self.xw[i] for i in self.idx]
y0 = [self.y0[i] for i in self.idx]
lens = list(map(len, xw))
return xc, xw, y0, lens
def unsort(self):
self.idx = sorted(range(len(self.x0)), key = lambda x: self.idx[x])
self.y1 = [self.y1[i] for i in self.idx]
if self.prob:
self.prob = [self.prob[i] for i in self.idx]
if self.attn:
self.attn = [self.attn[i] for i in self.idx]
class dataloader(dataset):
def __init__(self, batch_first = False, hre = False):
super().__init__()
self.batch_first = batch_first
self.hre = hre # hierarchical recurrent encoding
def append_row(self):
for x in self._vars:
getattr(self, x).append([])
def append_item(self, **kwargs):
for k, v in kwargs.items():
getattr(self, k)[-1].append(v)
def clone_row(self):
for x in self._vars:
getattr(self, x).append(getattr(self, x)[-1])
def flatten(self, x): # [Ld, Ls, Lw] -> [Ld * Ls, Lw]
if self.hre:
return [list(x) for x in x for x in x]
try:
return [x if type(x[0]) == str else list(*x) for x in x]
except:
return [x for x in x for x in x]
def batchify(self, batch_size):
if self.hre:
self.x0 = [[x] for x in self.x0]
self.y0 = [[[y[0] if y else None for y in y]] for y in self.y0]
for i in range(0, len(self.y0), batch_size):
batch = dataset()
j = i + min(batch_size, len(self.x0) - i)
batch.lens = list(map(len, self.xw[i:j]))
for x in self._vars:
setattr(batch, x, self.flatten(getattr(self, x)[i:j]))
yield batch
def to_tensor(self, bc = None, bw = None, lens = None, sos = False, eos = False):
p, s, e = [PAD_IDX], [SOS_IDX], [EOS_IDX]
if self.hre and lens:
dl = max(lens) # document length (Ld)
i, _bc, _bw = 0, [], []
for j in lens:
if bc:
if sos: _bc.append([[]])
_bc += bc[i:i + j] + [[[]] for _ in range(dl - j)]
if eos: _bc.append([[]])
if bw:
if sos: _bw.append([])
_bw += bw[i:i + j] + [[] for _ in range(dl - j)]
if eos: _bw.append([])
i += j
bc, bw = _bc, _bw # [B * Ld, ...]
if bw:
sl = max(map(len, bw)) # sentence length (Ls)
bw = [s * sos + x + e * eos + p * (sl - len(x)) for x in bw]
bw = LongTensor(bw) # [B * Ld, Ls]
if not self.batch_first:
bw.transpose_(0, 1)
if bc:
wl = max(max(map(len, x)) for x in bc) # word length (Lw)
wp = [p * (wl + 2)]
bc = [[s + x + e + p * (wl - len(x)) for x in x] for x in bc]
bc = [wp * sos + x + wp * (sl - len(x) + eos) for x in bc]
bc = LongTensor(bc) # [B * Ld, Ls, Lw]
if not self.batch_first:
bc.transpose_(0, 1)
return bc, bw