|
| 1 | +""" |
| 2 | +Validate temperature scaling in sampling by comparing pairwise logprob differences. |
| 3 | +
|
| 4 | +Two complementary checks ensure correctness across temperatures and sequence positions: |
| 5 | +1. Temperature scaling: Verifies (log p_τ(i) - log p_τ(j)) ≈ (1/τ) * (log p_1(i) - log p_1(j)) |
| 6 | +2. Sequence-level consistency: Validates multi-token sampling returns accurate logprobs at each step. |
| 7 | +""" |
| 8 | + |
| 9 | +from __future__ import annotations |
| 10 | + |
| 11 | +import asyncio |
| 12 | +from typing import Sequence |
| 13 | + |
| 14 | +import chz |
| 15 | +import numpy as np |
| 16 | +import tinker |
| 17 | + |
| 18 | +from tinker_cookbook.tokenizer_utils import get_tokenizer |
| 19 | + |
| 20 | + |
| 21 | +def _default_temperatures() -> list[float]: |
| 22 | + return [0.5, 0.7, 1.0, 1.2, 1.5, 1.8] |
| 23 | + |
| 24 | + |
| 25 | +@chz.chz |
| 26 | +class Config: |
| 27 | + base_model: str |
| 28 | + prompt: str = ( |
| 29 | + "Explain temperature scaling in language model sampling, include a brief " |
| 30 | + "example, and discuss calibration vs diversity trade-offs." |
| 31 | + ) |
| 32 | + temperatures: list[float] = chz.field(default_factory=_default_temperatures) |
| 33 | + baseline_temperature: float = 1.0 |
| 34 | + num_trials: int = 20 |
| 35 | + check_sequence_consistency: bool = True |
| 36 | + consistency_check_length: int = 20 |
| 37 | + consistency_check_temp: float = 0.5 |
| 38 | + seed: int | None = 42 |
| 39 | + base_url: str | None = None |
| 40 | + |
| 41 | + |
| 42 | +async def _sample_next_token( |
| 43 | + sampling_client: tinker.SamplingClient, |
| 44 | + model_input: tinker.ModelInput, |
| 45 | + *, |
| 46 | + temperature: float, |
| 47 | + max_tokens: int, |
| 48 | + seed: int | None, |
| 49 | +) -> tuple[list[int], list[float]]: |
| 50 | + resp = await sampling_client.sample_async( |
| 51 | + prompt=model_input, |
| 52 | + num_samples=1, |
| 53 | + sampling_params=tinker.SamplingParams( |
| 54 | + max_tokens=max_tokens, |
| 55 | + temperature=temperature, |
| 56 | + seed=seed, |
| 57 | + ), |
| 58 | + ) |
| 59 | + seq = resp.sequences[0] |
| 60 | + if seq.logprobs is None: |
| 61 | + raise RuntimeError("Sampling response did not include logprobs") |
| 62 | + return seq.tokens, seq.logprobs |
| 63 | + |
| 64 | + |
| 65 | +async def _collect_sampled_token_logprobs( |
| 66 | + sampling_client: tinker.SamplingClient, |
| 67 | + model_input: tinker.ModelInput, |
| 68 | + *, |
| 69 | + temperature: float, |
| 70 | + num_trials: int, |
| 71 | + max_tokens: int, |
| 72 | + seed: int | None, |
| 73 | +) -> dict[int, float]: |
| 74 | + """Collect token_id -> logprob at a given temperature over several trials.""" |
| 75 | + out: dict[int, float] = {} |
| 76 | + base = 0 if seed is None else seed |
| 77 | + for i in range(num_trials): |
| 78 | + s = base + i if seed is not None else None |
| 79 | + tokens, lps = await _sample_next_token( |
| 80 | + sampling_client, |
| 81 | + model_input, |
| 82 | + temperature=temperature, |
| 83 | + max_tokens=max_tokens, |
| 84 | + seed=s, |
| 85 | + ) |
| 86 | + if not tokens: |
| 87 | + continue |
| 88 | + t = tokens[0] |
| 89 | + out.setdefault(t, lps[0]) |
| 90 | + return out |
| 91 | + |
| 92 | + |
| 93 | +async def _compute_logp1_for_tokens( |
| 94 | + sampling_client: tinker.SamplingClient, |
| 95 | + prompt_tokens: list[int], |
| 96 | + tokens: Sequence[int], |
| 97 | +) -> dict[int, float]: |
| 98 | + """Compute baseline log p_1(token|prompt) for each token via compute_logprobs_async.""" |
| 99 | + res: dict[int, float] = {} |
| 100 | + for tok in tokens: |
| 101 | + seq = tinker.ModelInput.from_ints(prompt_tokens + [tok]) |
| 102 | + lps = await sampling_client.compute_logprobs_async(seq) |
| 103 | + lp = lps[len(prompt_tokens)] |
| 104 | + if lp is None: |
| 105 | + raise RuntimeError( |
| 106 | + "compute_logprobs_async did not return a logprob for the sampled token" |
| 107 | + ) |
| 108 | + res[tok] = lp |
| 109 | + return res |
| 110 | + |
| 111 | + |
| 112 | +def _pairwise_ratio_metrics( |
| 113 | + base_logp: dict[int, float], |
| 114 | + temp_logp: dict[int, float], |
| 115 | + temperature: float, |
| 116 | +) -> dict[str, float]: |
| 117 | + """Compare pairwise logprob differences: (log p_τ(i) - log p_τ(j)) vs (1/τ) * (log p_1(i) - log p_1(j)).""" |
| 118 | + common = sorted(set(base_logp) & set(temp_logp)) |
| 119 | + if len(common) < 2: |
| 120 | + return { |
| 121 | + "tokens": float(len(common)), |
| 122 | + "pairs": 0.0, |
| 123 | + "mean_abs_err": float("nan"), |
| 124 | + "max_abs_err": float("nan"), |
| 125 | + } |
| 126 | + base_diffs: list[float] = [] |
| 127 | + temp_diffs: list[float] = [] |
| 128 | + inv_tau = 1.0 / max(temperature, 1e-9) |
| 129 | + for a in range(len(common)): |
| 130 | + for b in range(a + 1, len(common)): |
| 131 | + i, j = common[a], common[b] |
| 132 | + base_diffs.append(inv_tau * (base_logp[i] - base_logp[j])) |
| 133 | + temp_diffs.append(temp_logp[i] - temp_logp[j]) |
| 134 | + x = np.array(base_diffs, dtype=float) |
| 135 | + y = np.array(temp_diffs, dtype=float) |
| 136 | + abs_err = np.abs(y - x) |
| 137 | + mean_abs_err = float(np.mean(abs_err)) |
| 138 | + max_abs_err = float(np.max(abs_err)) |
| 139 | + return { |
| 140 | + "tokens": float(len(common)), |
| 141 | + "pairs": float(len(base_diffs)), |
| 142 | + "mean_abs_err": mean_abs_err, |
| 143 | + "max_abs_err": max_abs_err, |
| 144 | + } |
| 145 | + |
| 146 | + |
| 147 | +# ============================================================================ |
| 148 | +# Sequence-level consistency validation |
| 149 | +# ============================================================================ |
| 150 | + |
| 151 | + |
| 152 | +async def _sample_sequence_oneshot( |
| 153 | + sampling_client: tinker.SamplingClient, |
| 154 | + prompt_tokens: list[int], |
| 155 | + *, |
| 156 | + temperature: float, |
| 157 | + max_tokens: int, |
| 158 | + seed: int | None, |
| 159 | +) -> tuple[list[int], list[float]]: |
| 160 | + """Sample a sequence in one call with max_tokens > 1.""" |
| 161 | + model_input = tinker.ModelInput.from_ints(prompt_tokens) |
| 162 | + resp = await sampling_client.sample_async( |
| 163 | + prompt=model_input, |
| 164 | + num_samples=1, |
| 165 | + sampling_params=tinker.SamplingParams( |
| 166 | + max_tokens=max_tokens, |
| 167 | + temperature=temperature, |
| 168 | + seed=seed, |
| 169 | + ), |
| 170 | + ) |
| 171 | + seq = resp.sequences[0] |
| 172 | + if seq.logprobs is None: |
| 173 | + raise RuntimeError("Sampling response did not include logprobs") |
| 174 | + return seq.tokens, seq.logprobs |
| 175 | + |
| 176 | + |
| 177 | +async def _resample_tokens_individually( |
| 178 | + sampling_client: tinker.SamplingClient, |
| 179 | + prompt_tokens: list[int], |
| 180 | + *, |
| 181 | + temperature: float, |
| 182 | + length: int, |
| 183 | + seed: int | None, |
| 184 | +) -> tuple[list[int], list[float]]: |
| 185 | + """Sample tokens one at a time, feeding each back into the prefix. |
| 186 | +
|
| 187 | + This mimics what max_tokens > 1 should do internally: sample token i, |
| 188 | + append to context, then sample token i+1. |
| 189 | + """ |
| 190 | + tokens: list[int] = [] |
| 191 | + logprobs: list[float] = [] |
| 192 | + current_prefix = prompt_tokens.copy() |
| 193 | + |
| 194 | + for i in range(length): |
| 195 | + model_input = tinker.ModelInput.from_ints(current_prefix) |
| 196 | + # Increment seed for each position to get different random states |
| 197 | + pos_seed = (seed + i) if seed is not None else None |
| 198 | + |
| 199 | + resp = await sampling_client.sample_async( |
| 200 | + prompt=model_input, |
| 201 | + num_samples=1, |
| 202 | + sampling_params=tinker.SamplingParams( |
| 203 | + max_tokens=1, |
| 204 | + temperature=temperature, |
| 205 | + seed=pos_seed, |
| 206 | + ), |
| 207 | + ) |
| 208 | + seq = resp.sequences[0] |
| 209 | + if not seq.tokens or seq.logprobs is None: |
| 210 | + break |
| 211 | + |
| 212 | + tok = seq.tokens[0] |
| 213 | + logprob = seq.logprobs[0] |
| 214 | + tokens.append(tok) |
| 215 | + logprobs.append(logprob) |
| 216 | + current_prefix.append(tok) |
| 217 | + |
| 218 | + return tokens, logprobs |
| 219 | + |
| 220 | + |
| 221 | +def _compare_logprobs( |
| 222 | + sampled_logprobs: list[float], |
| 223 | + computed_logprobs: list[float], |
| 224 | +) -> dict[str, float]: |
| 225 | + """Compare sampled vs recomputed logprobs.""" |
| 226 | + min_len = min(len(sampled_logprobs), len(computed_logprobs)) |
| 227 | + if min_len == 0: |
| 228 | + return { |
| 229 | + "length": 0.0, |
| 230 | + "mean_diff": float("nan"), |
| 231 | + "max_diff": float("nan"), |
| 232 | + } |
| 233 | + |
| 234 | + diffs = [abs(sampled_logprobs[i] - computed_logprobs[i]) for i in range(min_len)] |
| 235 | + |
| 236 | + return { |
| 237 | + "length": float(min_len), |
| 238 | + "mean_diff": float(np.mean(diffs)), |
| 239 | + "max_diff": float(np.max(diffs)), |
| 240 | + } |
| 241 | + |
| 242 | + |
| 243 | +async def validate_sequence_consistency( |
| 244 | + sampling_client: tinker.SamplingClient, |
| 245 | + prompt_tokens: list[int], |
| 246 | + *, |
| 247 | + temperature: float, |
| 248 | + length: int, |
| 249 | + seed: int | None, |
| 250 | + tokenizer, |
| 251 | +) -> None: |
| 252 | + """Validate that sample_async(max_tokens > 1) returns accurate per-step logprobs. |
| 253 | +
|
| 254 | + Generates a sequence then resamples each position individually to find matching tokens |
| 255 | + and compare their logprobs, validating correctness at each step. |
| 256 | + """ |
| 257 | + print("\n" + "=" * 75) |
| 258 | + print("SEQUENCE-LEVEL CONSISTENCY CHECK (multi-token logprob validation)") |
| 259 | + print("=" * 75) |
| 260 | + print( |
| 261 | + f"Generate with max_tokens={length} at temp={temperature}, then resample each position individually to verify logprob consistency." |
| 262 | + ) |
| 263 | + print(f"{'Temp':>8} {'Length':>8} {'Matches':>8} {'Mean Diff':>12} {'Max Diff':>12}") |
| 264 | + print("-" * 75) |
| 265 | + |
| 266 | + tau = temperature |
| 267 | + gen_tokens, gen_logprobs = await _sample_sequence_oneshot( |
| 268 | + sampling_client, prompt_tokens, temperature=tau, max_tokens=length, seed=seed |
| 269 | + ) |
| 270 | + |
| 271 | + matching_diffs: list[float] = [] |
| 272 | + num_attempts_per_position = 5 |
| 273 | + |
| 274 | + for i in range(len(gen_tokens)): |
| 275 | + prefix = prompt_tokens + gen_tokens[:i] |
| 276 | + model_input = tinker.ModelInput.from_ints(prefix) |
| 277 | + |
| 278 | + for attempt in range(num_attempts_per_position): |
| 279 | + resp = await sampling_client.sample_async( |
| 280 | + prompt=model_input, |
| 281 | + num_samples=1, |
| 282 | + sampling_params=tinker.SamplingParams( |
| 283 | + max_tokens=1, |
| 284 | + temperature=tau, |
| 285 | + seed=(seed + 1000 * (i + 1) + attempt) if seed is not None else None, |
| 286 | + ), |
| 287 | + ) |
| 288 | + seq = resp.sequences[0] |
| 289 | + if not seq.tokens or seq.logprobs is None: |
| 290 | + continue |
| 291 | + |
| 292 | + if seq.tokens[0] == gen_tokens[i]: |
| 293 | + matching_diffs.append(abs(gen_logprobs[i] - seq.logprobs[0])) |
| 294 | + break |
| 295 | + |
| 296 | + if len(matching_diffs) == 0: |
| 297 | + print(f"{tau:>8.3f} {len(gen_tokens):>8} {0:>8} {'N/A':>12} {'N/A':>12} {'N/A':>8}") |
| 298 | + return |
| 299 | + |
| 300 | + mean_diff = float(np.mean(matching_diffs)) |
| 301 | + max_diff = float(np.max(matching_diffs)) |
| 302 | + print( |
| 303 | + f"{tau:>8.3f} {len(gen_tokens):>8} {len(matching_diffs):>8} {mean_diff:>12.6f} {max_diff:>12.6f}" |
| 304 | + ) |
| 305 | + print() |
| 306 | + |
| 307 | + |
| 308 | +async def main(cfg: Config) -> None: |
| 309 | + tokenizer = get_tokenizer(cfg.base_model) |
| 310 | + prompt_tokens = tokenizer.encode(cfg.prompt) |
| 311 | + model_input = tinker.ModelInput.from_ints(prompt_tokens) |
| 312 | + |
| 313 | + service = tinker.ServiceClient(base_url=cfg.base_url) |
| 314 | + sampler = service.create_sampling_client(base_model=cfg.base_model) |
| 315 | + |
| 316 | + print("\n" + "=" * 75) |
| 317 | + print("TEMPERATURE SCALING VALIDATION") |
| 318 | + print("=" * 75) |
| 319 | + |
| 320 | + base_seen = await _collect_sampled_token_logprobs( |
| 321 | + sampler, |
| 322 | + model_input, |
| 323 | + temperature=cfg.baseline_temperature, |
| 324 | + num_trials=cfg.num_trials, |
| 325 | + max_tokens=1, |
| 326 | + seed=cfg.seed, |
| 327 | + ) |
| 328 | + base_logp = await _compute_logp1_for_tokens(sampler, prompt_tokens, list(base_seen)) |
| 329 | + |
| 330 | + print(f"Model: {cfg.base_model}, {cfg.num_trials} trials per temperature") |
| 331 | + print(f"{'Temp':>8} {'Unique Tokens':>15} {'Pairs':>8} {'Mean Diff':>12} {'Max Diff':>12}") |
| 332 | + print("-" * 75) |
| 333 | + |
| 334 | + for tau in cfg.temperatures: |
| 335 | + temp_seen = await _collect_sampled_token_logprobs( |
| 336 | + sampler, |
| 337 | + model_input, |
| 338 | + temperature=tau, |
| 339 | + num_trials=cfg.num_trials, |
| 340 | + max_tokens=1, |
| 341 | + seed=cfg.seed, |
| 342 | + ) |
| 343 | + missing = [t for t in temp_seen if t not in base_logp] |
| 344 | + if missing: |
| 345 | + base_logp.update(await _compute_logp1_for_tokens(sampler, prompt_tokens, missing)) |
| 346 | + metrics = _pairwise_ratio_metrics(base_logp, temp_seen, tau) |
| 347 | + |
| 348 | + mean_diff = metrics["mean_abs_err"] |
| 349 | + max_diff = metrics["max_abs_err"] |
| 350 | + print( |
| 351 | + f"{tau:>8.3f} {int(metrics['tokens']):>15} {int(metrics['pairs']):>8} {mean_diff:>12.6f} {max_diff:>12.6f}" |
| 352 | + ) |
| 353 | + |
| 354 | + if cfg.check_sequence_consistency: |
| 355 | + await validate_sequence_consistency( |
| 356 | + sampler, |
| 357 | + prompt_tokens, |
| 358 | + temperature=cfg.consistency_check_temp, |
| 359 | + length=cfg.consistency_check_length, |
| 360 | + seed=cfg.seed, |
| 361 | + tokenizer=tokenizer, |
| 362 | + ) |
| 363 | + |
| 364 | + print() |
| 365 | + |
| 366 | + |
| 367 | +if __name__ == "__main__": |
| 368 | + asyncio.run(chz.nested_entrypoint(main)) |
0 commit comments