Skip to content

Commit 097a140

Browse files
committed
Update README
1 parent 0c7c9ee commit 097a140

File tree

1 file changed

+9
-8
lines changed

1 file changed

+9
-8
lines changed

README.md

Lines changed: 9 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55

66
---
77

8-
[![GitHub release](https://img.shields.io/badge/release-1.1.0-yellow.svg)](https://github.com/thieu1995/intelelm/releases)
8+
[![GitHub release](https://img.shields.io/badge/release-1.1.1-yellow.svg)](https://github.com/thieu1995/intelelm/releases)
99
[![Wheel](https://img.shields.io/pypi/wheel/gensim.svg)](https://pypi.python.org/pypi/intelelm)
1010
[![PyPI version](https://badge.fury.io/py/intelelm.svg)](https://badge.fury.io/py/intelelm)
1111
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/intelelm.svg)
@@ -87,7 +87,7 @@ Please include these citations if you plan to use this library:
8787
$ pip install intelelm
8888
```
8989

90-
After installation, you can import IntelELM as any other Python module:
90+
After installation, you can check the version of current installed IntelELM by:
9191

9292
```sh
9393
$ python
@@ -107,7 +107,6 @@ $ python
107107
preprocessing steps mentioned below can be replicated using Scikit-Learn, we have implemented some utility functions
108108
to provide users with convenience and faster usage.
109109

110-
#### Utilities everything that IntelELM provided
111110

112111
```python
113112
### Step 1: Importing the libraries
@@ -129,25 +128,27 @@ data.y_test = scaler_y.transform(data.y_test)
129128
#### Step 5: Fitting ELM-based model to the dataset
130129

131130
##### 5.1: Use standard ELM model for regression problem
132-
regressor = ElmRegressor(hidden_size=10, act_name="relu")
131+
regressor = ElmRegressor(hidden_size=10, act_name="relu", seed=42)
133132
regressor.fit(data.X_train, data.y_train)
134133

135134
##### 5.2: Use standard ELM model for classification problem
136-
classifer = ElmClassifier(hidden_size=10, act_name="tanh")
135+
classifer = ElmClassifier(hidden_size=10, act_name="tanh", seed=42)
137136
classifer.fit(data.X_train, data.y_train)
138137

139138
##### 5.3: Use Metaheuristic-based ELM model for regression problem
140139
print(MhaElmClassifier.SUPPORTED_OPTIMIZERS)
141140
print(MhaElmClassifier.SUPPORTED_REG_OBJECTIVES)
142141
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
143-
regressor = MhaElmRegressor(hidden_size=10, act_name="elu", obj_name="RMSE", optimizer="BaseGA", optimizer_paras=opt_paras)
142+
regressor = MhaElmRegressor(hidden_size=10, act_name="elu", obj_name="RMSE",
143+
optimizer="BaseGA", optimizer_paras=opt_paras, seed=42)
144144
regressor.fit(data.X_train, data.y_train)
145145

146146
##### 5.4: Use Metaheuristic-based ELM model for classification problem
147147
print(MhaElmClassifier.SUPPORTED_OPTIMIZERS)
148148
print(MhaElmClassifier.SUPPORTED_CLS_OBJECTIVES)
149149
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
150-
classifier = MhaElmClassifier(hidden_size=10, act_name="elu", obj_name="KLDL", optimizer="BaseGA", optimizer_paras=opt_paras)
150+
classifier = MhaElmClassifier(hidden_size=10, act_name="elu", obj_name="KLDL",
151+
optimizer="BaseGA", optimizer_paras=opt_paras, seed=42)
151152
classifier.fit(data.X_train, data.y_train)
152153

153154
#### Step 6: Predicting a new result
@@ -246,7 +247,7 @@ data.split_train_test(test_size=0.2, random_state=10) # Try different random_st
246247
```python
247248
opt_paras = {"name": "GA", "epoch": 30, "pop_size": 30}
248249
model = MhaElmClassifier(hidden_size=10, act_name="elu", obj_name="KLDL", optimizer="BaseGA",
249-
optimizer_paras=opt_paras, verbose=True)
250+
optimizer_paras=opt_paras, verbose=True, seed=42)
250251
model.fit(X_train, y_train, lb=(-10., ), ub=(10., ))
251252
y_pred = model.predict(X_test)
252253
```

0 commit comments

Comments
 (0)