5
5
6
6
---
7
7
8
- [ ![ GitHub release] ( https://img.shields.io/badge/release-1.1.0 -yellow.svg )] ( https://github.com/thieu1995/intelelm/releases )
8
+ [ ![ GitHub release] ( https://img.shields.io/badge/release-1.1.1 -yellow.svg )] ( https://github.com/thieu1995/intelelm/releases )
9
9
[ ![ Wheel] ( https://img.shields.io/pypi/wheel/gensim.svg )] ( https://pypi.python.org/pypi/intelelm )
10
10
[ ![ PyPI version] ( https://badge.fury.io/py/intelelm.svg )] ( https://badge.fury.io/py/intelelm )
11
11
![ PyPI - Python Version] ( https://img.shields.io/pypi/pyversions/intelelm.svg )
@@ -87,7 +87,7 @@ Please include these citations if you plan to use this library:
87
87
$ pip install intelelm
88
88
```
89
89
90
- After installation, you can import IntelELM as any other Python module :
90
+ After installation, you can check the version of current installed IntelELM by :
91
91
92
92
``` sh
93
93
$ python
@@ -107,7 +107,6 @@ $ python
107
107
preprocessing steps mentioned below can be replicated using Scikit-Learn, we have implemented some utility functions
108
108
to provide users with convenience and faster usage.
109
109
110
- #### Utilities everything that IntelELM provided
111
110
112
111
``` python
113
112
# ## Step 1: Importing the libraries
@@ -129,25 +128,27 @@ data.y_test = scaler_y.transform(data.y_test)
129
128
# ### Step 5: Fitting ELM-based model to the dataset
130
129
131
130
# #### 5.1: Use standard ELM model for regression problem
132
- regressor = ElmRegressor(hidden_size = 10 , act_name = " relu" )
131
+ regressor = ElmRegressor(hidden_size = 10 , act_name = " relu" , seed = 42 )
133
132
regressor.fit(data.X_train, data.y_train)
134
133
135
134
# #### 5.2: Use standard ELM model for classification problem
136
- classifer = ElmClassifier(hidden_size = 10 , act_name = " tanh" )
135
+ classifer = ElmClassifier(hidden_size = 10 , act_name = " tanh" , seed = 42 )
137
136
classifer.fit(data.X_train, data.y_train)
138
137
139
138
# #### 5.3: Use Metaheuristic-based ELM model for regression problem
140
139
print (MhaElmClassifier.SUPPORTED_OPTIMIZERS )
141
140
print (MhaElmClassifier.SUPPORTED_REG_OBJECTIVES )
142
141
opt_paras = {" name" : " GA" , " epoch" : 10 , " pop_size" : 30 }
143
- regressor = MhaElmRegressor(hidden_size = 10 , act_name = " elu" , obj_name = " RMSE" , optimizer = " BaseGA" , optimizer_paras = opt_paras)
142
+ regressor = MhaElmRegressor(hidden_size = 10 , act_name = " elu" , obj_name = " RMSE" ,
143
+ optimizer = " BaseGA" , optimizer_paras = opt_paras, seed = 42 )
144
144
regressor.fit(data.X_train, data.y_train)
145
145
146
146
# #### 5.4: Use Metaheuristic-based ELM model for classification problem
147
147
print (MhaElmClassifier.SUPPORTED_OPTIMIZERS )
148
148
print (MhaElmClassifier.SUPPORTED_CLS_OBJECTIVES )
149
149
opt_paras = {" name" : " GA" , " epoch" : 10 , " pop_size" : 30 }
150
- classifier = MhaElmClassifier(hidden_size = 10 , act_name = " elu" , obj_name = " KLDL" , optimizer = " BaseGA" , optimizer_paras = opt_paras)
150
+ classifier = MhaElmClassifier(hidden_size = 10 , act_name = " elu" , obj_name = " KLDL" ,
151
+ optimizer = " BaseGA" , optimizer_paras = opt_paras, seed = 42 )
151
152
classifier.fit(data.X_train, data.y_train)
152
153
153
154
# ### Step 6: Predicting a new result
@@ -246,7 +247,7 @@ data.split_train_test(test_size=0.2, random_state=10) # Try different random_st
246
247
``` python
247
248
opt_paras = {" name" : " GA" , " epoch" : 30 , " pop_size" : 30 }
248
249
model = MhaElmClassifier(hidden_size = 10 , act_name = " elu" , obj_name = " KLDL" , optimizer = " BaseGA" ,
249
- optimizer_paras = opt_paras, verbose = True )
250
+ optimizer_paras = opt_paras, verbose = True , seed = 42 )
250
251
model.fit(X_train, y_train, lb = (- 10 ., ), ub = (10 ., ))
251
252
y_pred = model.predict(X_test)
252
253
```
0 commit comments