forked from Elucidation/tensorflow_chessbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_chessbot.py
555 lines (449 loc) · 18.4 KB
/
tensorflow_chessbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
# TensorFlow Chessbot
# This is the main script for loading and running a trained CNN on chessboard
# screenshots.
#
# $ ./tensorflow_chessbot.py -h
# usage: tensorflow_chessbot.py [-h] [--url URL] [--filepath FILEPATH]
#
# Predict a chessboard FEN from supplied local image link or URL
#
# optional arguments:
# -h, --help show this help message and exit
# --url URL URL of image (ex. http://imgur.com/u4zF5Hj.png)
# --filepath FILEPATH filepath to image (ex. u4zF5Hj.png)
#
# This file is used by chessbot.py, a Reddit bot that listens on /r/chess for
# posts with an image in it (perhaps checking also for a statement
# "white/black to play" and an image link)
#
# It then takes the image, uses some CV to find a chessboard on it, splits up into
# a set of images of squares. These are the inputs to the tensorflow CNN
# which will return probability of which piece is on it (or empty)
#
# Dataset will include chessboard squares from chess.com, lichess
# Different styles of each, all the pieces
#
# Generate synthetic data via added noise:
# * change in coloration
# * highlighting
# * occlusion from lines etc.
#
# Take most probable set from TF response, use that to generate a FEN of the
# board, and bot comments on thread with FEN and link to lichess analysis.
#
# A lot of tensorflow code here is heavily adopted from the
# [tensorflow tutorials](https://www.tensorflow.org/versions/0.6.0/tutorials/pdes/index.html)
import tensorflow as tf
import numpy as np
import os
import glob
import argparse
# Imports for computer vision
import PIL.Image
import scipy.signal
import helper_functions
parser = argparse.ArgumentParser(description='Predict a chessboard FEN from supplied local image link or URL')
parser.add_argument('--url', help='URL of image (ex. http://imgur.com/u4zF5Hj.png)')
parser.add_argument('--filepath', help='filepath to image (ex. u4zF5Hj.png)')
def make_kernel(a):
"""Transform a 2D array into a convolution kernel"""
a = np.asarray(a)
a = a.reshape(list(a.shape) + [1,1])
return tf.constant(a, dtype=1)
def simple_conv(x, k):
"""A simplified 2D convolution operation"""
x = tf.expand_dims(tf.expand_dims(x, 0), -1)
y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
return y[0, :, :, 0]
def gradientx(x):
"""Compute the x gradient of an array"""
gradient_x = make_kernel([[-1.,0., 1.],
[-1.,0., 1.],
[-1.,0., 1.]])
return simple_conv(x, gradient_x)
def gradienty(x):
"""Compute the x gradient of an array"""
gradient_y = make_kernel([[-1., -1, -1],[0.,0,0], [1., 1, 1]])
return simple_conv(x, gradient_y)
def checkMatch(lineset):
"""Checks whether there exists 7 lines of consistent increasing order in set of lines"""
linediff = np.diff(lineset)
x = 0
cnt = 0
for line in linediff:
# Within 5 px of the other (allowing for minor image errors)
if np.abs(line - x) < 5:
cnt += 1
else:
cnt = 0
x = line
return cnt == 5
def pruneLines(lineset):
"""Prunes a set of lines to 7 in consistent increasing order (chessboard)"""
linediff = np.diff(lineset)
x = 0
cnt = 0
start_pos = 0
for i, line in enumerate(linediff):
# Within 5 px of the other (allowing for minor image errors)
if np.abs(line - x) < 5:
cnt += 1
if cnt == 5:
end_pos = i+2
return lineset[start_pos:end_pos]
else:
cnt = 0
x = line
start_pos = i
return []
def skeletonize_1d(arr):
"""return skeletonized 1d array (thin to single value, favor to the right)"""
_arr = arr.copy() # create a copy of array to modify without destroying original
# Go forwards
for i in range(_arr.size-1):
# Will right-shift if they are the same
if arr[i] <= _arr[i+1]:
_arr[i] = 0
# Go reverse
for i in np.arange(_arr.size-1, 0,-1):
if _arr[i-1] > _arr[i]:
_arr[i] = 0
return _arr
gausswin = scipy.signal.gaussian(21,4)
gausswin /= np.sum(gausswin)
def getChessLines(hdx, hdy, hdx_thresh, hdy_thresh):
"""Returns pixel indices for the 7 internal chess lines in x and y axes"""
# Blur where there is a strong horizontal or vertical line (binarize)
blur_x = np.convolve((hdx > hdx_thresh)*1.0, gausswin, mode='same')
blur_y = np.convolve((hdy > hdy_thresh)*1.0, gausswin, mode='same')
skel_x = skeletonize_1d(blur_x)
skel_y = skeletonize_1d(blur_y)
# Find points on skeletonized arrays (where returns 1-length tuple)
lines_x = np.where(skel_x)[0] # vertical lines
lines_y = np.where(skel_y)[0] # horizontal lines
# Prune inconsisten lines
lines_x = pruneLines(lines_x)
lines_y = pruneLines(lines_y)
is_match = len(lines_x) == 7 and len(lines_y) == 7 and checkMatch(lines_x) and checkMatch(lines_y)
return lines_x, lines_y, is_match
def getChessTiles(a, lines_x, lines_y):
"""Split up input grayscale array into 64 tiles stacked in a 3D matrix using the chess linesets"""
# Find average square size, round to a whole pixel for determining edge pieces sizes
stepx = np.int32(np.round(np.mean(np.diff(lines_x))))
stepy = np.int32(np.round(np.mean(np.diff(lines_y))))
# Pad edges as needed to fill out chessboard (for images that are partially over-cropped)
padr_x = 0
padl_x = 0
padr_y = 0
padl_y = 0
if lines_x[0] - stepx < 0:
padl_x = np.abs(lines_x[0] - stepx)
if lines_x[-1] + stepx > a.shape[1]-1:
padr_x = np.abs(lines_x[-1] + stepx - a.shape[1])
if lines_y[0] - stepy < 0:
padl_y = np.abs(lines_y[0] - stepy)
if lines_y[-1] + stepx > a.shape[0]-1:
padr_y = np.abs(lines_y[-1] + stepy - a.shape[0])
# New padded array
a2 = np.pad(a, ((padl_y,padr_y),(padl_x,padr_x)), mode='edge')
setsx = np.hstack([lines_x[0]-stepx, lines_x, lines_x[-1]+stepx]) + padl_x
setsy = np.hstack([lines_y[0]-stepy, lines_y, lines_y[-1]+stepy]) + padl_y
a2 = a2[setsy[0]:setsy[-1], setsx[0]:setsx[-1]]
setsx -= setsx[0]
setsy -= setsy[0]
# Tiles will contain 32x32x64 values corresponding to 64 chess tile images
# A resize is needed to do this
# tiles = np.zeros([np.round(stepy), np.round(stepx), 64],dtype=np.uint8)
tiles = np.zeros([32, 32, 64],dtype=np.float32)
# For each row
for i in range(0,8):
# For each column
for j in range(0,8):
# Vertical lines
x1 = setsx[i]
x2 = setsx[i+1]
padr_x = 0
padl_x = 0
padr_y = 0
padl_y = 0
if (x2-x1) > stepx:
if i == 7:
x1 = x2 - stepx
else:
x2 = x1 + stepx
elif (x2-x1) < stepx:
if i == 7:
# right side, pad right
padr_x = stepx-(x2-x1)
else:
# left side, pad left
padl_x = stepx-(x2-x1)
# Horizontal lines
y1 = setsy[j]
y2 = setsy[j+1]
if (y2-y1) > stepy:
if j == 7:
y1 = y2 - stepy
else:
y2 = y1 + stepy
elif (y2-y1) < stepy:
if j == 7:
# right side, pad right
padr_y = stepy-(y2-y1)
else:
# left side, pad left
padl_y = stepy-(y2-y1)
# slicing a, rows sliced with horizontal lines, cols by vertical lines so reversed
# Also, change order so its A1,B1...H8 for a white-aligned board
# Apply padding as defined previously to fit minor pixel offsets
# tiles[:,:,(7-j)*8+i] = np.pad(a2[y1:y2, x1:x2],((padl_y,padr_y),(padl_x,padr_x)), mode='edge')
full_size_tile = np.pad(a2[y1:y2, x1:x2],((padl_y,padr_y),(padl_x,padr_x)), mode='edge')
tiles[:,:,(7-j)*8+i] = np.asarray( \
PIL.Image.fromarray(full_size_tile) \
.resize([32,32], PIL.Image.BILINEAR), dtype=np.float32) / 255.0
#PIL.Image.ADAPTIVE causes image artifacts
return tiles
def loadImage(img_file):
"""Load image from file, convert to grayscale float32 numpy array"""
img = PIL.Image.open(img_file)
img = resizeAsNeeded(img)
# Convert to grayscale and return as an numpy array
return np.asarray(img.convert("L"), dtype=np.float32)
def resizeAsNeeded(img):
"""Resize if image larger than 2k pixels on a side"""
if img.size[0] > 2000 or img.size[1] > 2000:
print("Image too big (%d x %d)" % (img.size[0], img.size[1]))
new_size = 500.0 # px
if img.size[0] > img.size[1]:
# resize by width to new limit
ratio = new_size / img.size[0]
else:
# resize by height
ratio = new_size / img.size[1]
print("Reducing by factor of %.2g" % (1./ratio))
img = img.resize(img.size * ratio, PIL.Image.ADAPTIVE)
print("New size: (%d x %d)" % (img.size[0], img.size[1]))
return img
def getTiles(img_arr):
"""Find and slice 64 chess tiles from image in 3D Matrix"""
# Get our grayscale image matrix
A = tf.Variable(img_arr)
# X & Y gradients
Dx = gradientx(A)
Dy = gradienty(A)
Dx_pos = tf.clip_by_value(Dx, 0., 255., name="dx_positive")
Dx_neg = tf.clip_by_value(Dx, -255., 0., name='dx_negative')
Dy_pos = tf.clip_by_value(Dy, 0., 255., name="dy_positive")
Dy_neg = tf.clip_by_value(Dy, -255., 0., name='dy_negative')
# 1-D ampltitude of hough transform of gradients about X & Y axes
# Chessboard lines have strong positive and negative gradients within an axis
hough_Dx = tf.reduce_sum(Dx_pos, 0) * tf.reduce_sum(-Dx_neg, 0) / (img_arr.shape[0]*img_arr.shape[0])
hough_Dy = tf.reduce_sum(Dy_pos, 1) * tf.reduce_sum(-Dy_neg, 1) / (img_arr.shape[1]*img_arr.shape[1])
# Slightly closer to 3/5 threshold, since they're such strong responses
hough_Dx_thresh = tf.reduce_max(hough_Dx) * 3/5
hough_Dy_thresh = tf.reduce_max(hough_Dy) * 3/5
# Transition from TensorFlow to normal values (todo, do TF right)
# Initialize A with image array input
# tf.initialize_all_variables().run() # will reset CNN weights so be selective
# Local tf session
sess = tf.Session()
sess.run(tf.initialize_variables([A], name='getTiles_init'))
# Get chess lines (try a fiew sets)
hdx, hdy, hdx_thresh, hdy_thresh = sess.run(
[hough_Dx, hough_Dy, hough_Dx_thresh, hough_Dy_thresh])
lines_x, lines_y, is_match = getChessLines(hdx, hdy, hdx_thresh, hdy_thresh)
for percentage in np.array([0.9, 0.8, 0.7, 0.6]):
if is_match:
break
else:
print("Trying %d%% of threshold" % (100*percentage))
lines_x, lines_y, is_match = getChessLines(hdx, hdy,
hdx_thresh * percentage, hdy_thresh * percentage)
# Get the tileset
if is_match:
return getChessTiles(img_arr, lines_x, lines_y)
else:
print("\tNo Match, lines found (dx/dy):", lines_x, lines_y)
return [] # No match, no tiles
def saveTiles(tiles, img_save_dir, img_file):
letters = 'ABCDEFGH'
if not os.path.exists(img_save_dir):
os.makedirs(img_save_dir)
for i in range(64):
sqr_filename = "%s/%s_%s%d.png" % (img_save_dir, img_file, letters[i%8], i/8+1)
# Make resized 32x32 image from matrix and save
if tiles.shape != (32,32,64):
PIL.Image.fromarray(tiles[:,:,i]) \
.resize([32,32], PIL.Image.ADAPTIVE) \
.save(sqr_filename)
else:
# Possibly saving floats 0-1 needs to change fromarray settings
PIL.Image.fromarray((tiles[:,:,i]*255).astype(np.uint8)) \
.save(sqr_filename)
def generateTileset(input_chessboard_folder, output_tile_folder):
# Create output folder as needed
if not os.path.exists(output_tile_folder):
os.makedirs(output_tile_folder)
# Get all image files of type png/jpg/gif
img_files = set(glob.glob("%s/*.png" % input_chessboard_folder))\
.union(set(glob.glob("%s/*.jpg" % input_chessboard_folder)))\
.union(set(glob.glob("%s/*.gif" % input_chessboard_folder)))
num_success = 0
num_failed = 0
num_skipped = 0
for i, img_path in enumerate(img_files):
print("#% 3d/%d : %s" % (i+1, len(img_files), img_path))
# Strip to just filename
img_file = img_path[len(input_chessboard_folder)+1:-4]
# Create output save directory or skip this image if it exists
img_save_dir = "%s/tiles_%s" % (output_tile_folder, img_file)
if os.path.exists(img_save_dir):
print("\tSkipping existing")
num_skipped += 1
continue
# Load image
print("---")
print("Loading %s..." % img_path)
img_arr = loadImage(img_path)
# Get tiles
print("\tGenerating tiles for %s..." % img_file)
tiles = getTiles(img_arr)
# Save tiles
if len(tiles) > 0:
print("\tSaving tiles %s" % img_file)
saveTiles(tiles, img_save_dir, img_file)
num_success += 1
else:
print("\tNo Match, skipping")
num_failed += 1
print("\t%d/%d generated, %d failures, %d skipped." % (num_success,
len(img_files) - num_skipped, num_failed, num_skipped))
class ChessboardPredictor(object):
"""ChessboardPredictor using saved model"""
def __init__(self, model_path='saved_models/model_10000.ckpt'):
print("Setting up CNN TensorFlow graph...")
def weight_variable(shape, name=""):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name)
def bias_variable(shape, name=""):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x, name=""):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME', name=name)
self.x = tf.placeholder(tf.float32, [None, 32*32])
# First layer : 32 features
W_conv1 = weight_variable([5, 5, 1, 32], name='W1')
b_conv1 = bias_variable([32], name='B1')
x_image = tf.reshape(self.x, [-1,32,32,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1, name='Conv1')
h_pool1 = max_pool_2x2(h_conv1, name='Pool1')
# Second convolutional layer : 64 features
W_conv2 = weight_variable([5, 5, 32, 64], name='W2')
b_conv2 = bias_variable([64], name='B2')
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2, name='Conv2')
h_pool2 = max_pool_2x2(h_conv2, name='Pool2')
# Densely connected layer : 1024 neurons, image size now 8x8
W_fc1 = weight_variable([8 * 8 * 64, 1024], name='W3')
b_fc1 = bias_variable([1024], name='B3')
h_pool2_flat = tf.reshape(h_pool2, [-1, 8*8*64], name='Pool3')
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1, 'MatMult3')
# Dropout
self.keep_prob = tf.placeholder("float", name='KeepProb')
h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob, name='Drop4')
# Readout layer : softmax, 13 features
W_fc2 = weight_variable([1024, 13], name='W5')
b_fc2 = bias_variable([13], name='B5')
self.y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2, name='Ypredict')
# # Old single layer regression classifier
# W = tf.Variable(tf.zeros([32*32, 13]))
# b = tf.Variable(tf.zeros([13]))
# y = tf.nn.softmax(tf.matmul(x, W) + b)
# Ground truth labels if exist
y_ = tf.placeholder(tf.float32, [None, 13], name='Ytruth')
cross_entropy = -tf.reduce_sum(y_*tf.log(self.y_conv), name='CrossEntropy')
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(self.y_conv,1), tf.argmax(y_,1), name='CorrectPrediction')
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"), name='Accuracy')
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Start Interactive session for rest of notebook (else we'd want to close session)
self.sess = tf.Session()
# Restore model from checkpoint
print("Loading model '%s'" % model_path)
saver.restore(self.sess, model_path)
print("Model restored.")
def getPrediction(self,img):
"""Run trained neural network on tiles generated from image"""
# Convert to grayscale numpy array
img_arr = np.asarray(img.convert("L"), dtype=np.float32)
# Use computer vision to get the tiles
tiles = getTiles(img_arr)
if tiles is None or len(tiles) == 0:
print("Couldn't parse chessboard")
return None, 0.0
# Reshape into Nx1024 rows of input data, format used by neural network
validation_set = np.swapaxes(np.reshape(tiles, [32*32, 64]),0,1)
# Run neural network on data
guess_prob, guessed = self.sess.run([self.y_conv, tf.argmax(self.y_conv,1)], feed_dict={self.x: validation_set, self.keep_prob: 1.0})
# Prediction bounds
a = np.array(map(lambda x: x[0][x[1]], zip(guess_prob, guessed)))
print("Certainty range [%g - %g], Avg: %g, Overall: %g" % (a.min(), a.max(), a.mean(), a.prod()))
# Convert guess into FEN string
# guessed is tiles A1-H8 rank-order, so to make a FEN we just need to flip the files from 1-8 to 8-1
pieceNames = map(lambda k: '1' if k == 0 else helper_functions.labelIndex2Name(k), guessed) # exchange ' ' for '1' for FEN
fen = '/'.join([''.join(pieceNames[i*8:(i+1)*8]) for i in reversed(range(8))])
return fen, a.prod()
#########################################################
# CNN Prediction Wrapper
def makePrediction(self,image_url):
"""Return FEN prediction, and certainty for a URL"""
# Try to load image url
img = helper_functions.loadImageURL(image_url)
if img == None:
print("Couldn't load image url: %s" % image_url)
return None, 0.0
# Make prediction
fen, certainty = self.getPrediction(img)
if fen:
return fen, certainty
else:
return None, 0.0
def makePredictionFromFile(self,image_path):
"""Return FEN prediction, and certainty for a image file"""
# Try to load image url
img = helper_functions.loadImageFromPath(image_path)
if img == None:
print("Couldn't load image path: %s" % image_path)
return None, 0.0
# Make prediction
fen, certainty = self.getPrediction(img)
if fen:
return fen, certainty
else:
return None, 0.0
###########################################################
# MAIN
if __name__ == '__main__':
args = parser.parse_args()
# Initialize predictor, takes a while, but only needed once
predictor = ChessboardPredictor()
if args.filepath:
fen, certainty = predictor.makePredictionFromFile(args.filepath)
print("Predicted FEN: %s" % fen)
print("Certainty: %.1f%%" % (certainty*100))
else:
if args.url:
url = args.url
else:
url = 'http://imgur.com/u4zF5Hj.png'
fen, certainty = predictor.makePrediction(url)
print("Predicted FEN: %s" % fen)
print("Certainty: %.1f%%" % (certainty*100))
print("Done")