-
Notifications
You must be signed in to change notification settings - Fork 30
/
gdist.pyx
359 lines (303 loc) · 14 KB
/
gdist.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need do download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2024, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as follows:
#
# Paula Sanz Leon, Stuart A. Knock, M. Marmaduke Woodman, Lia Domide,
# Jochen Mersmann, Anthony R. McIntosh, Viktor Jirsa (2013)
# The Virtual Brain: a simulator of primate brain network dynamics.
# Frontiers in Neuroinformatics (7:10. doi: 10.3389/fninf.2013.00010)
#
#
"""
This module defines a Cython wrapper for the geodesic distance C++ library.
The algorithm (implemented in C++) extends Mitchell, Mount and Papadimitriou
(1987) and was written by Danil Kirsanov
(http://code.google.com/archive/p/geodesic/).
The interface definitions and wrapper functions are written in Cython syntax
(http://cython.org/) and provide an API for some of the classes, functions and
constants useful for calculating the geodesic distance.
To compile, and build gdist.so using Cython::
python setup.py build_ext --inplace
.. moduleauthor:: Gaurav Malhotra <[email protected]>
.. moduleauthor:: Stuart A. Knock <[email protected]>
"""
# For compatible datatypes
import numpy
cimport numpy
# For csc_matrix returned by local_gdist_matrix()
import scipy.sparse
# Pre-cdef'd containers from the C++ standard library
from libcpp cimport bool
from libcpp.vector cimport vector
################################################################################
############ Defininitions to access the C++ geodesic distance library #########
################################################################################
cdef extern from "geodesic_mesh_elements.h" namespace "geodesic":
cdef cppclass Vertex:
Vertex()
cdef extern from "geodesic_mesh_elements.h" namespace "geodesic":
cdef cppclass SurfacePoint:
SurfacePoint()
SurfacePoint(Vertex*)
double& x()
double& y()
double& z()
cdef extern from "geodesic_mesh.h" namespace "geodesic":
cdef cppclass Mesh:
Mesh()
void initialize_mesh_data(vector[double]&, vector[unsigned]&, bool)
vector[Vertex]& vertices()
cdef extern from "geodesic_utils.h":
vector[double] compute_gdist_impl(vector[double], vector[unsigned], vector[unsigned], vector[unsigned], double, bool, bool)
cdef extern from "geodesic_algorithm_exact.h" namespace "geodesic":
cdef cppclass GeodesicAlgorithmExact:
GeodesicAlgorithmExact(Mesh*)
void propagate(vector[SurfacePoint]&, double, vector[SurfacePoint]*)
unsigned best_source(SurfacePoint&, double&)
cdef extern from "geodesic_constants_and_simple_functions.h" namespace "geodesic":
double GEODESIC_INF
################################################################################
cdef get_mesh(
numpy.ndarray[numpy.float64_t, ndim=2] vertices,
numpy.ndarray[numpy.int32_t, ndim=2] triangles,
Mesh &amesh,
bool is_one_indexed
):
# Define C++ vectors to contain the mesh surface components.
cdef vector[double] points
cdef vector[unsigned] faces
# Map numpy array of mesh "vertices" to C++ vector of mesh "points"
cdef numpy.float64_t coord
for coord in vertices.flatten():
points.push_back(coord)
# Map numpy array of mesh "triangles" to C++ vector of mesh "faces"
cdef numpy.int32_t indx
for indx in triangles.flatten():
faces.push_back(indx)
amesh.initialize_mesh_data(points, faces, is_one_indexed)
def compute_gdist(numpy.ndarray[numpy.float64_t, ndim=2] vertices,
numpy.ndarray[numpy.int32_t, ndim=2] triangles,
numpy.ndarray[numpy.int32_t, ndim=1] source_indices=None,
numpy.ndarray[numpy.int32_t, ndim=1] target_indices=None,
double max_distance=GEODESIC_INF,
bool is_one_indexed=False):
"""This is the wrapper function for computing geodesic distance between a
set of sources and targets on a mesh surface.
Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z
coordinates of the mesh's vertices.
triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of
the mesh as index triplets into vertices.
source_indices (numpy.ndarray[numpy.int32_t, ndim=1]): Index of the
source on the mesh.
target_indices (numpy.ndarray[numpy.int32_t, ndim=1]): Index of the
targets on the mesh.
max_distance (double): Propagation algorithm stops after reaching the
certain distance from the source.
is_one_indexed (bool): defines if the index of the triangles data is
one-indexed.
Returns:
numpy.ndarray((len(target_indices), ), dtype=numpy.float64): Specifying
the shortest distance to the target vertices from the nearest source
vertex on the mesh. If no target_indices are provided, all vertices
of the mesh are considered as targets, however, in this case,
specifying max_distance will limit the targets to those vertices
within max_distance of a source. If no source_indices are provided,
it defaults to 0.
NOTE: This is the function to use when specifying localised stimuli and
parameter variations. For efficiently using the whole mesh as sources, such
as is required to represent local connectivity within the cortex, see the
local_gdist_matrix() function.
Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> src = numpy.array([1], dtype=numpy.int32)
>>> trg = numpy.array([2], dtype=numpy.int32)
>>> import gdist
>>> gdist.compute_gdist(vertices, triangles, source_indices=src, target_indices=trg)
array([0.2])
"""
cdef bool propagate_on_max_distance = False
cdef vector[double] points
cdef vector[unsigned] faces
if source_indices is None:
source_indices = numpy.arange(1, dtype=numpy.int32) # default to 0
if target_indices is None:
propagate_on_max_distance = True
target_indices = numpy.arange(vertices.shape[0], dtype=numpy.int32)
for k in vertices.flatten():
points.push_back(k)
for k in triangles.flatten():
faces.push_back(k)
distances = compute_gdist_impl(
points,
faces,
source_indices,
target_indices,
max_distance,
is_one_indexed,
propagate_on_max_distance,
)
# TODO: Basically copies, can be improved as memory is contiguous.
distances = numpy.asarray(distances)
distances[distances == max_distance] = numpy.inf
return distances
def local_gdist_matrix(numpy.ndarray[numpy.float64_t, ndim=2] vertices,
numpy.ndarray[numpy.int32_t, ndim=2] triangles,
double max_distance=GEODESIC_INF,
bool is_one_indexed=False):
"""This is the wrapper function for computing geodesic distance from every
vertex on the surface to all those within a distance ``max_distance`` of
them.
Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z
coordinates of the mesh's vertices.
triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of
the mesh as index triplets into vertices.
max_distance (double): Propagation algorithm stops after reaching the
certain distance from the source.
is_one_indexed (bool): defines if the index of the triangles data is
one-indexed.
Returns:
scipy.sparse.csc_matrix((N, N), dtype=numpy.float64): where N
is the number of vertices, specifying the shortest distance from all
vertices to all the vertices within max_distance.
Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> import gdist
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> gdist.local_gdist_matrix(vertices, triangles, max_distance=1.0)
<121x121 sparse matrix of type '<type 'numpy.float64'>'
with 6232 stored elements in Compressed Sparse Column format>
Runtime and guesstimated memory usage as a function of max_distance for the
reg_13 cortical surface mesh, ie containing 2**13 vertices per hemisphere.
::
[[10, 20, 30, 40, 50, 60, 70, 80, 90, 100], # mm
[19, 28, 49, 81, 125, 181, 248, 331, 422, 522], # s
[ 3, 13, 30, 56, 89, 129, 177, 232, 292, 358]] # MB]
where memory is a min-guestimate given by: mem_req = nnz * 8 / 1024 / 1024.
"""
"""
NOTE: The best_source loop could be sped up considerably by restricting
targets to those vertices within max_distance of the source, however,
this will first require the efficient extraction of this information
from the propgate step...
"""
cdef Mesh amesh
get_mesh(vertices, triangles, amesh, is_one_indexed)
# Define and create object for exact algorithm on that mesh:
cdef GeodesicAlgorithmExact *algorithm = new GeodesicAlgorithmExact(&amesh)
cdef vector[SurfacePoint] source, targets
cdef Py_ssize_t N = vertices.shape[0]
cdef Py_ssize_t k
cdef Py_ssize_t kk
cdef numpy.float64_t distance = 0
# Add all vertices as targets
for k in range(N):
targets.push_back(SurfacePoint(&amesh.vertices()[k]))
rows = []
columns = []
data = []
for k in range(N):
source.push_back(SurfacePoint(&amesh.vertices()[k]))
algorithm.propagate(source, max_distance, NULL)
source.pop_back()
for kk in range(N): # TODO: Reduce to vertices reached during propagate.
algorithm.best_source(targets[kk], distance)
if (
distance is not GEODESIC_INF
and distance is not 0
and distance <= max_distance
):
rows.append(k)
columns.append(kk)
data.append(distance)
return scipy.sparse.csc_matrix((data, (rows, columns)), shape=(N, N))
def distance_matrix_of_selected_points(
numpy.ndarray[numpy.float64_t, ndim=2] vertices,
numpy.ndarray[numpy.int32_t, ndim=2] triangles,
numpy.ndarray[numpy.int32_t, ndim=1] points,
double max_distance=GEODESIC_INF,
bool is_one_indexed=False
):
"""Function for calculating pairwise geodesic distance for a set of points
within a distance ``max_distance`` of them.
Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z
coordinates of the mesh's vertices.
triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of
the mesh as index triplets into vertices.
points (numpy.ndarray[numpy.int32_t, ndim=1]): Indices of the points
among which the pairwise distances are to be calculated.
max_distance (double): Propagation algorithm stops after reaching the
certain distance from the source.
is_one_indexed (bool): defines if the index of the triangles data is
one-indexed.
Returns:
scipy.sparse.csc_matrix((N, N), dtype=numpy.float64): where N
is the number of vertices, specifying the pairwise distances among
the given points.
Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> points = numpy.array([2, 5, 10], dtype=numpy.int32)
>>> import gdist
>>> gdist.distance_matrix_of_selected_points(
vertices, triangles, points
)
<121x121 sparse matrix of type '<class 'numpy.float64'>'
with 6 stored elements in Compressed Sparse Column format>
"""
cdef vector[unsigned] rows
cdef vector[unsigned] columns
cdef vector[double] distance_matrix
for index_point, point in enumerate(points):
target_indices = points[index_point + 1:]
source_index = numpy.array([point], dtype=numpy.int32)
target_indices = numpy.array(target_indices, dtype=numpy.int32)
distances = compute_gdist(
vertices,
triangles,
source_index,
target_indices,
max_distance,
is_one_indexed,
)
for index_distance, distance in enumerate(distances):
rows.push_back(point)
columns.push_back(target_indices[index_distance])
distance_matrix.push_back(distance)
# symmetric
rows.push_back(target_indices[index_distance])
columns.push_back(point)
distance_matrix.push_back(distance)
cdef Py_ssize_t no_of_vertices = vertices.shape[0]
return scipy.sparse.csc_matrix(
(distance_matrix, (rows, columns)),
shape=(no_of_vertices, no_of_vertices)
)