-
Notifications
You must be signed in to change notification settings - Fork 45.8k
/
evaluate.py
140 lines (109 loc) · 4.51 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluates text classification model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import time
# Dependency imports
import tensorflow as tf
import graphs
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '',
'BNS name prefix of the Tensorflow eval master, '
'or "local".')
flags.DEFINE_string('eval_dir', '/tmp/text_eval',
'Directory where to write event logs.')
flags.DEFINE_string('eval_data', 'test', 'Specify which dataset is used. '
'("train", "valid", "test") ')
flags.DEFINE_string('checkpoint_dir', '/tmp/text_train',
'Directory where to read model checkpoints.')
flags.DEFINE_integer('eval_interval_secs', 60, 'How often to run the eval.')
flags.DEFINE_integer('num_examples', 32, 'Number of examples to run.')
flags.DEFINE_bool('run_once', False, 'Whether to run eval only once.')
def restore_from_checkpoint(sess, saver):
"""Restore model from checkpoint.
Args:
sess: Session.
saver: Saver for restoring the checkpoint.
Returns:
bool: Whether the checkpoint was found and restored
"""
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if not ckpt or not ckpt.model_checkpoint_path:
tf.logging.info('No checkpoint found at %s', FLAGS.checkpoint_dir)
return False
saver.restore(sess, ckpt.model_checkpoint_path)
return True
def run_eval(eval_ops, summary_writer, saver):
"""Runs evaluation over FLAGS.num_examples examples.
Args:
eval_ops: dict<metric name, tuple(value, update_op)>
summary_writer: Summary writer.
saver: Saver.
Returns:
dict<metric name, value>, with value being the average over all examples.
"""
sv = tf.train.Supervisor(
logdir=FLAGS.eval_dir, saver=None, summary_op=None, summary_writer=None)
with sv.managed_session(
master=FLAGS.master, start_standard_services=False) as sess:
if not restore_from_checkpoint(sess, saver):
return
sv.start_queue_runners(sess)
metric_names, ops = zip(*eval_ops.items())
value_ops, update_ops = zip(*ops)
value_ops_dict = dict(zip(metric_names, value_ops))
# Run update ops
num_batches = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
tf.logging.info('Running %d batches for evaluation.', num_batches)
for i in range(num_batches):
if (i + 1) % 10 == 0:
tf.logging.info('Running batch %d/%d...', i + 1, num_batches)
if (i + 1) % 50 == 0:
_log_values(sess, value_ops_dict)
sess.run(update_ops)
_log_values(sess, value_ops_dict, summary_writer=summary_writer)
def _log_values(sess, value_ops, summary_writer=None):
"""Evaluate, log, and write summaries of the eval metrics in value_ops."""
metric_names, value_ops = zip(*value_ops.items())
values = sess.run(value_ops)
tf.logging.info('Eval metric values:')
summary = tf.summary.Summary()
for name, val in zip(metric_names, values):
summary.value.add(tag=name, simple_value=val)
tf.logging.info('%s = %.3f', name, val)
if summary_writer is not None:
global_step_val = sess.run(tf.train.get_global_step())
tf.logging.info('Finished eval for step ' + str(global_step_val))
summary_writer.add_summary(summary, global_step_val)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
tf.gfile.MakeDirs(FLAGS.eval_dir)
tf.logging.info('Building eval graph...')
output = graphs.get_model().eval_graph(FLAGS.eval_data)
eval_ops, moving_averaged_variables = output
saver = tf.train.Saver(moving_averaged_variables)
summary_writer = tf.summary.FileWriter(
FLAGS.eval_dir, graph=tf.get_default_graph())
while True:
run_eval(eval_ops, summary_writer, saver)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
if __name__ == '__main__':
tf.app.run()