REST application which outputs coupon redemption predictions
Dependencies of the project are contained in requirements.txt file. All the packages are publicly available.
All the packages can be installed with:
pip install -f requirements.txt
For development purposes creating a dedicated virtual environment is helpful (Python 3.8, all the dependencies installed there):
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
TBD
The code reads configuration information (tokens, secrets) from environment variables. They need to be set accordingly in
advance.
.environment.variables.sh
can be used for that purpose. Then, in order to run the service the following commands can be
used:
$ . .environment.variables.sh
$ . .venv/bin/activate
(venv)$ uvicorn app.main:app --host 0.0.0.0 --reload
curl -s -X 'POST' \
'http://localhost:8000/score' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"customer":{
"customer_id":1,
"gender":"M",
"age":79,
"mean_buy_price":11.62,
"total_coupons_used":285,
"mean_discount_received":9.16,
"unique_products_bought":866,
"unique_products_bought_with_coupons":232,
"total_items_bought":1102
},
"coupons":[
{
"coupon_id":7,
"coupon_type":"buy_all",
"department":"Boys",
"discount":49.0,
"how_many_products_required":3,
"product_mean_price":8.79,
"products_available":3,
"start_date":"2010-01-01",
"end_date":"2010-01-09"
},
{
"coupon_id":8,
"coupon_type":"buy_more",
"department":"Boys",
"discount":20.0,
"how_many_products_required":3,
"product_mean_price":7.44,
"products_available":1,
"start_date":"2010-01-01",
"end_date":"2010-01-12"
},
{
"coupon_id":9,
"coupon_type":"just_discount",
"department":"Boys",
"discount":23.0,
"how_many_products_required":1,
"product_mean_price":6.12,
"products_available":1,
"start_date":"2010-01-01",
"end_date":"2010-01-29"
}
]
}' | jq .
Example response:
[
{
"coupon_id": "8",
"customer_id": "1",
"prediction": 0.6108783426
},
{
"coupon_id": "9",
"customer_id": "1",
"prediction": 0.5151725303
},
{
"coupon_id": "7",
"customer_id": "1",
"prediction": 0.3721197586
}
]
The docker image for the service is Dockerfile. In order to build the image use:
docker build -t prediction-service:0.0.1 .
Set image name (
prediction-service
) and tag (0.0.1
) according to your needs.
To run the service as a Docker container run:
docker run -d -p 8000:80 -e LOG_LEVEL="warning" prediction-service:0.0.1