-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
51 lines (44 loc) · 1.34 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
from dataclasses import dataclass
@dataclass
class Parameters:
# Grid Parameters
Lx: float = 200e3
Ly: float = 200e3
Nx: int = 128
Ny: int = 128
dx: float = Lx / Nx
dy: float = Ly / Ny
# Physical parameters
f0: float = 2e-4
gp: float = 23.1516
H0: float = 500
# Temporal Parameters
mins: float = 60.
hours: float = 3600.
days: float = 0.414 * 24 * 3600.
t0: float = 0.0
tf: float = 0.4 * days
dt: float = 3
tp: float = 0.1 * hours
Nt: int = int(tf / dt)
npt: int = int(tp / dt)
tt: np.ndarray = np.arange(0, tf + dt, dt)
ttpl: np.ndarray = np.arange(0, tf + tp, tp)
# Define Grid (staggered grid)
x: np.ndarray = np.linspace(-Lx / 2 + dx / 2, Lx / 2 - dx / 2, Nx)
y: np.ndarray = np.linspace(-Ly / 2 + dy / 2, Ly / 2 - dy / 2, Ny)
xx, yy = np.meshgrid(x, y)
# Define wavenumber (frequency)
kx = 2 * np.pi / Lx * Nx * np.fft.fftfreq(Nx)
ky = 2 * np.pi / Ly * Ny * np.fft.fftfreq(2 * Ny)
kxx, kyy = np.meshgrid(kx, ky)
# Filter Parameters
kmax = max(max(kx), max(ky))
ks = 0.8 * kmax
km = 0.9 * kmax
alpha = 0.69 * ks ** (-1.88 / np.log(km / ks))
beta = 1.88 / np.log(km / ks)
sfilt = np.exp(-alpha * (kxx ** 2 + kyy ** 2) ** (beta / 2.0))
# Modify class
ikx, iky = 1j * kxx, 1j * kyy