forked from andrewrgarcia/monte-carlo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhatsinmycloset.py
103 lines (79 loc) · 2.65 KB
/
whatsinmycloset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 31 14:45:11 2019
@author: garci
"""
import random as ran
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.stats import tstd, variation
def shoes(n,lowbound,upbound):
k=0
cost = []
while k < n:
cost.append(ran.uniform(lowbound,upbound))
k+=1
return cost
def clothes(n,mean,sdev,cutoff):
k=0
cost = []
while k < n:
sample=ran.gauss(mean,sdev)
'cutoff (shirts cannot be cheaper than $[cutoff value] )'
cost.append(sample) if sample >=cutoff else cost.append(5)
k+=1
return cost
def single(show='off'):
nboots,nsand,ndr,nsh,npnt = 10,3,12,15,8
x= range(sum((nboots,nsand,ndr,nsh,npnt)))
'closet items'
boots = shoes(nboots,40,120)
sandals = shoes(nsand,2,10)
dresses = clothes(ndr,mean=80,sdev=10,cutoff=50)
shirts = clothes(nsh,mean=40,sdev=20,cutoff=5)
pants = clothes(npnt,mean=70,sdev=30,cutoff=20)
data=concatenate((boots,sandals,dresses,shirts,pants))
if show == 'on':
'plot density histogram'
plt.figure()
plt.scatter(x,data)
plt.title(r'Closet value (single simulation): $ {}'.format(np.round((sum(data)),2)),size=13)
plt.ylabel(r"Cost of clothing items / $",size=13)
plt.xlabel('Item number',size=13)
plt.figure()
wts = np.ones_like(data) / float(len(data))
plt.hist(data, stacked =True, weights=wts,edgecolor='k')
plt.title(r'Closet value: $ {}'.format(np.round((sum(data)),2)),size=13)
plt.xlabel(r"Cost of clothing items / $",size=13)
plt.ylabel('P',size=13)
plt.show()
'2nd plot'
total = sum(data)
plt.figure()
# wts = np.ones_like(total)
plt.hist(total, stacked =True,edgecolor='k',color='darkorange')
plt.suptitle('<Closet value>: $ {}'.\
format(total),size=13)
return sum(data)
single('on')
def iters(N):
i=0
simulations = []
while i < N:
ith_iter = single('off')
simulations.append(ith_iter)
print('$',ith_iter)
i+=1
data=simulations
'plot density histogram'
plt.figure()
wts = np.ones_like(data) / float(len(data))
plt.hist(data, stacked =True, weights=wts,edgecolor='k',color='darkorange')
average=int(np.mean(data))
plt.suptitle('<Closet value>: $ {} +- {} (std. dev.)'.\
format(average,int(tstd(data))),size=13)
plt.xlabel(r"Total closet values for {} simulation(s) / $".format(N),size=13)
plt.ylabel('P',size=13)
plt.show()
iters(100000)