Skip to content

Latest commit

 

History

History
127 lines (97 loc) · 6 KB

README.md

File metadata and controls

127 lines (97 loc) · 6 KB

SGLKT-VisDial

Pytorch Implementation for the paper:

Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer
Gi-Cheon Kang, Junseok Park, Hwaran Lee, Byoung-Tak Zhang*, and Jin-Hwa Kim* (* corresponding authors)
In EMNLP 2021 Findings

Setup and Dependencies

This code is implemented using PyTorch v1.0+, and provides out of the box support with CUDA 9+ and CuDNN 7+. Anaconda/Miniconda is the recommended to set up this codebase:

  1. Install Anaconda or Miniconda distribution based on Python3+ from their downloads' site.
  2. Clone this repository and create an environment:
git clone https://www.github.com/gicheonkang/sglkt-visdial
conda create -n visdial-ch python=3.6

# activate the environment and install all dependencies
conda activate sglkt
cd sglkt-visdial/
pip install -r requirements.txt

# install this codebase as a package in development version
python setup.py develop

Download Data

  1. We used the Faster-RCNN pre-trained with Visual Genome as image features. Download the image features below, and put each feature under $PROJECT_ROOT/data/{SPLIT_NAME}_feature directory. We need image_id to RCNN bounding box index file ({SPLIT_NAME}_imgid2idx.pkl) because the number of bounding box per image is not fixed (ranging from 10 to 100).
  • train_btmup_f.hdf5: Bottom-up features of 10 to 100 proposals from images of train split (32GB).
  • val_btmup_f.hdf5: Bottom-up features of 10 to 100 proposals from images of validation split (0.5GB).
  • test_btmup_f.hdf5: Bottom-up features of 10 to 100 proposals from images of test split (2GB).
  1. Download the pre-trained, pre-processed word vectors from here (glove840b_init_300d.npy), and keep them under $PROJECT_ROOT/data/ directory. You can manually extract the vectors by executing data/init_glove.py.

  2. Download visual dialog dataset from here (visdial_1.0_train.json, visdial_1.0_val.json, visdial_1.0_test.json, and visdial_1.0_val_dense_annotations.json) under $PROJECT_ROOT/data/ directory.

  3. Download the additional data for Sparse Graph Learning and Knowledge Transfer under $PROJECT_ROOT/data/ directory.

Training

Train the model provided in this repository as:

python train.py --gpu-ids 0 1 # provide more ids for multi-GPU execution other args...

Saving model checkpoints

This script will save model checkpoints at every epoch as per path specified by --save-dirpath. Default path is $PROJECT_ROOT/checkpoints.

Evaluation

Evaluation of a trained model checkpoint can be done as follows:

python evaluate.py --load-pthpath /path/to/checkpoint.pth --split val --gpu-ids 0 1

Validation scores can be checked in offline setting. But if you want to check the test split score, you have to submit a json file to EvalAI online evaluation server. You can make json format with --save_ranks True option.

Pre-trained model & Results

We provide the pre-trained models for SGL+KT and SGL.
To reproduce the results reported in the paper, please run the command below.

python evaluate.py --load-pthpath SGL+KT.pth --split test --gpu-ids 0 1 --save-ranks True

Performance on v1.0 test-std (trained on v1.0 train):

Model Overall NDCG MRR R@1 R@5 R@10 Mean
SGL+KT 65.31 72.60 58.01 46.20 71.01 83.20 5.85

Citation

If you use this code in your published research, please consider citing:

@article{kang2021reasoning,
  title={Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer},
  author={Kang, Gi-Cheon and Park, Junseok and Lee, Hwaran and Zhang, Byoung-Tak and Kim, Jin-Hwa},
  journal={arXiv preprint arXiv:2004.06698},
  year={2021}
}

License

MIT License

Acknowledgements

We use Visual Dialog Challenge Starter Code and MCAN-VQA as reference code.