-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
136 lines (97 loc) · 3.69 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_image
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
latent_size = 20
hidden_size = 400
image_size = 784
num_epochs = 200
batch_size = 100
lr = 1e-3
# Create directory if not exists
sample_dir = "samples"
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]) # for grayscale
])
mnist = torchvision.datasets.MNIST(
root='./data/',
train=True,
transform=transforms,
download=True
)
dataloader = torch.utils.data.DataLoader(dataset=mnist,
batch_size=batch_size,
shuffle=True)
class Encoder(nn.Module):
def __init__(self, input_dim=784, h_size=400, z_size=20):
super(Encoder, self).__init__()
self.fc1 = nn.Linear(input_dim, h_size)
self.FC_mean = nn.Linear(h_size, z_size)
self.FC_var = nn.Linear(h_size, z_size)
self.leakyReLU = nn.LeakyReLU(0.2)
def forward(self, x):
h = self.leakyReLU(self.fc1(x))
return self.FC_mean(h), self.FC_var(h)
class Decoder(nn.Module):
def __init__(self, h_size, z_size, output_dim):
super(Decoder, self).__init__()
self.fc4 = nn.Linear(z_size, h_size)
self.output = nn.Linear(h_size, output_dim)
self.leakyReLU = nn.LeakyReLU(0.2)
def forward(self, x):
h = self.leakyReLU(self.fc4(x))
x_hat = torch.sigmoid(self.output(h))
return x_hat
class VAE(nn.Module):
def __init__(self, Encoder, Decoder):
super(VAE, self).__init__()
self.encoder = Encoder
self.decoder = Decoder
def reparameterization(self, mean, var):
epsilon = torch.randn_like(var).to(device) # sampling epsilon
z = mean + var * epsilon # reparameterization trick
return z
def forward(self, x):
mean, log_var = self.encoder(x)
z = self.reparameterization(mean, torch.exp(0.5 * log_var)) # takes exponential function (log var => var)
x_hat = self.decoder(z)
return x_hat, mean, log_var
# intantiate encoder, decoder
encoder = Encoder(input_dim=image_size, h_size=hidden_size, z_size=latent_size)
decoder = Decoder(hidden_size, latent_size, image_size)
model = VAE(encoder, decoder).to(device)
# define loss criterion and optimizer
bce_loss = nn.BCELoss()
def loss_function(x, x_hat, mean, log_var):
reproduction_loss = nn.functional.binary_cross_entropy(x_hat, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp())
return reproduction_loss + KLD
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
print("Start training VAE.....")
model.train()
for epoch in range(num_epochs):
overall_loss = 0
for batch_idx, (x, _) in enumerate(dataloader):
x = x.reshape(batch_size, -1)
x = x.to(device)
# zero grad optimizer
optimizer.zero_grad()
x_hat, mean, log_var = model(x)
loss = loss_function(x, x_hat, mean, log_var)
overall_loss += loss.item()
loss.backward()
optimizer.step()
print("Epoch: [{}/{}], Loss: {}".format(num_epochs, epoch+1, overall_loss/ (batch_size*batch_idx)))
print("DOne!")
# look: https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/03-advanced/variational_autoencoder/main.py
# and : https://github.com/Jackson-Kang/Pytorch-VAE-tutorial/blob/master/01_Variational_AutoEncoder.ipynb
# learn more from https://pytorch.org/tutorials/