-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspygr_main.py
145 lines (108 loc) · 4.81 KB
/
spygr_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import numpy as np
import pandas as pd
import gc
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch import Tensor
from torch.backends import cudnn
import torchvision.models as models
import torchvision.transforms as T
from PIL import Image
from tqdm import tqdm
from spygr import *
from spygr_dataloader import *
from torch.backends import cudnn
device = torch.device("cuda")
def evaluate_model(val_dataloader, model: SpyGR, criterion):
eval_iou_score = 0
eval_loss = 0
for images, masks in tqdm(val_dataloader):
with torch.no_grad():
eval_images = images.to(device)
eval_labels = masks.to(device)
eval_outputs = model(eval_images)
model.eval()
eval_loss = criterion(eval_outputs, eval_labels)
eval_outputs = F.softmax(eval_outputs, dim=1)
eval_outputs = torch.argmax(eval_outputs, dim=1)
eval_outputs = eval_outputs.contiguous().view(-1)
eval_labels = eval_labels.contiguous().view(-1)
iou_per_class = []
for num_class in range(len(val_dataloader.class_names)):
true_class = (eval_outputs == num_class)
true_label = (eval_labels == num_class)
if true_label.long().sum().item() == 0:
iou_per_class.append(np.nan)
else:
intersect = torch.logical_and(
true_class, true_label).sum().float().item()
union = torch.logical_and(
true_class, true_label).sum().float().item()
iou = (intersect + 1e-10) / (union + 1e-10)
iou_per_class.append(iou)
eval_iou_score += np.nanmean(iou_per_class)
eval_loss += eval_loss
return eval_loss, eval_iou_score
def main():
transforms_train = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transforms_val = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transforms_test = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
root_dir = "D:/dataset" ### Directory of dataset
train_set = CityScapesData(root_dir, "fine", "train", transforms_train, (768,768))
valid_set = CityScapesData(root_dir, "fine", "val", transforms_val, (768,768))
test_set = CityScapesData(root_dir, "fine", "test", transforms_test, (768,768))
train_batch_size = 16 # Control by YAML
valid_batch_size = 64 # Control by YAML
test_batch_size = 32 # Control by YAML
train_loader = DataLoader(train_set, train_batch_size, num_workers=1)
valid_loader = DataLoader(valid_set, valid_batch_size, num_workers=1)
test_loader = DataLoader(test_set, test_batch_size, num_workers=1)
# device = torch.device("cuda")
model = SpyGR(device).to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-4) # Control by YAML
criterion = nn.CrossEntropyLoss(ignore_index=train_set.ignore_label).cuda()
num_epochs = 80 # Control by YAML
model.train()
num_params = sum([np.prod(p.shape) for p in model.parameters()])
print("Total number of parameters: {}".format(num_params))
num_params_update = sum([np.prod(p.shape)
for p in model.parameters() if p.requires_grad])
print("Total number of learning parameters: {}".format(num_params_update))
cudnn.benchmark = True
global_step = 0
steps_per_epoch = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print("[epoch][s/s_per_e/global_step]: [{}/{}][{}/{}/{}], loss: {:.12f}".format(
epoch+1, num_epochs, i+1, steps_per_epoch, global_step+1, loss))
checkpoint = {"global_step": global_step,
"model": model.state_dict(),
"optimizer": optimizer.state_dict()}
torch.save(checkpoint, os.path.join(
"D:/model", "spygr", "-{:07d}.pth".format(global_step)))
global_step += 1
eval_loss, eval_iou_score = evaluate_model(valid_loader, model, criterion)
print("Epoch: {}/{} | validation average loss: {:.5f} | evaluation mIoU: {:.5f}".format(epoch, num_epochs, eval_loss/len(valid_loader, eval_iou_score/len(valid_loader))))
model.train()
if __name__ == "__main__":
main()