-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathTestfile.py
178 lines (162 loc) · 7.19 KB
/
Testfile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import glob
import datetime
import math
import random
import os
import shutil
import matplotlib.pyplot as plt
import pretty_midi
from pypianoroll import Multitrack, Track
import librosa.display
from utils import *
ROOT_PATH = '/Users/sumuzhao/Downloads/'
test_ratio = 0.1
LAST_BAR_MODE = 'remove'
def get_bar_piano_roll(piano_roll):
if int(piano_roll.shape[0] % 64) is not 0:
if LAST_BAR_MODE == 'fill':
piano_roll = np.concatenate((piano_roll, np.zeros((64 - piano_roll.shape[0] % 64, 128))), axis=0)
elif LAST_BAR_MODE == 'remove':
piano_roll = np.delete(piano_roll, np.s_[-int(piano_roll.shape[0] % 64):], axis=0)
piano_roll = piano_roll.reshape(-1, 64, 128)
return piano_roll
def to_binary(bars, threshold=0.0):
"""Turn velocity value into boolean"""
track_is_max = tf.equal(bars, tf.reduce_max(bars, axis=-1, keep_dims=True))
track_pass_threshold = (bars > threshold)
out_track = tf.logical_and(track_is_max, track_pass_threshold)
return out_track
"""1. divide the original set into train and test sets"""
# l = [f for f in os.listdir(os.path.join(ROOT_PATH, 'MIDI/pop/pop_midi'))]
# print(l)
# idx = np.random.choice(len(l), int(test_ratio * len(l)), replace=False)
# print(len(idx))
# for i in idx:
# shutil.move(os.path.join(ROOT_PATH, 'MIDI/pop/pop_midi', l[i]),
# os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/origin_midi', l[i]))
"""2. convert_clean.py"""
"""3. choose the clean midi from original sets"""
# if not os.path.exists(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi')):
# os.makedirs(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi'))
# l = [f for f in os.listdir(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner'))]
# print(l)
# print(len(l))
# for i in l:
# shutil.copy(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/origin_midi', os.path.splitext(i)[0] + '.mid'),
# os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi', os.path.splitext(i)[0] + '.mid'))
"""4. merge and crop"""
# if not os.path.exists(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi_gen')):
# os.makedirs(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi_gen'))
# if not os.path.exists(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_npy')):
# os.makedirs(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_npy'))
# l = [f for f in os.listdir(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi'))]
# print(l)
# count = 0
# for i in range(len(l)):
# try:
# multitrack = Multitrack(beat_resolution=4, name=os.path.splitext(l[i])[0])
# x = pretty_midi.PrettyMIDI(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi', l[i]))
# multitrack.parse_pretty_midi(x)
#
# category_list = {'Piano': [], 'Drums': []}
# program_dict = {'Piano': 0, 'Drums': 0}
#
# for idx, track in enumerate(multitrack.tracks):
# if track.is_drum:
# category_list['Drums'].append(idx)
# else:
# category_list['Piano'].append(idx)
# tracks = []
# merged = multitrack[category_list['Piano']].get_merged_pianoroll()
# print(merged.shape)
#
# pr = get_bar_piano_roll(merged)
# print(pr.shape)
# pr_clip = pr[:, :, 24:108]
# print(pr_clip.shape)
# if int(pr_clip.shape[0] % 4) != 0:
# pr_clip = np.delete(pr_clip, np.s_[-int(pr_clip.shape[0] % 4):], axis=0)
# pr_re = pr_clip.reshape(-1, 64, 84, 1)
# print(pr_re.shape)
# save_midis(pr_re, os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_midi_gen', os.path.splitext(l[i])[0] +
# '.mid'))
# np.save(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_npy', os.path.splitext(l[i])[0] + '.npy'), pr_re)
# except:
# count += 1
# print('Wrong', l[i])
# continue
# print(count)
"""5. concatenate into a big binary numpy array file"""
# l = [f for f in os.listdir(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_npy'))]
# print(l)
# train = np.load(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_npy', l[0]))
# print(train.shape, np.max(train))
# for i in range(1, len(l)):
# print(i, l[i])
# t = np.load(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/cleaner_npy', l[i]))
# train = np.concatenate((train, t), axis=0)
# print(train.shape)
# np.save(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/pop_test_piano.npy'), (train > 0.0))
"""6. separate numpy array file into single phrases"""
# if not os.path.exists(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/phrase_test')):
# os.makedirs(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/phrase_test'))
# x = np.load(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/pop_test_piano.npy'))
# print(x.shape)
# count = 0
# for i in range(x.shape[0]):
# if np.max(x[i]):
# count += 1
# np.save(os.path.join(ROOT_PATH, 'MIDI/pop/pop_test/phrase_test/pop_piano_test_{}.npy'.format(i+1)), x[i])
# print(x[i].shape)
# # if count == 11216:
# # break
# print(count)
"""some other codes"""
# filepaths = []
# msd_id_list = []
# for dirpath, _, filenames in os.walk(os.path.join(ROOT_PATH, 'MIDI/Sinfonie Data')):
# for filename in filenames:
# if filename.endswith('.mid'):
# msd_id_list.append(filename)
# filepaths.append(os.path.join(dirpath, filename))
# print(filepaths)
# print(msd_id_list)
# for i in range(len(filepaths)):
# shutil.copy(filepaths[i], os.path.join(ROOT_PATH, 'MIDI/classic/classic_midi/{}'.format(msd_id_list[i])))
# x1 = np.load(os.path.join(ROOT_PATH, 'MIDI/classic/classic_train/classic_train_piano_1.npy'))
# x2 = np.load(os.path.join(ROOT_PATH, 'MIDI/classic/classic_train/classic_train_piano_2.npy'))
# x3 = np.load(os.path.join(ROOT_PATH, 'MIDI/classic/classic_train/classic_train_piano_3.npy'))
# x4 = np.load(os.path.join(ROOT_PATH, 'MIDI/classic/classic_train/classic_train_piano_4.npy'))
# x5 = np.load(os.path.join(ROOT_PATH, 'MIDI/classic/classic_train/classic_train_piano_5.npy'))
# x = np.concatenate((x1, x2, x3, x4, x5), axis=0)
# print(x.shape)
# np.save(os.path.join(ROOT_PATH, 'MIDI/classic/classic_train/classic_train_piano.npy'), x)
# multitrack = Multitrack(beat_resolution=4, name='YMCA')
# x = pretty_midi.PrettyMIDI(os.path.join(ROOT_PATH, 'MIDI/famous_songs/P2C/origin/YMCA.mid'))
# multitrack.parse_pretty_midi(x)
#
# category_list = {'Piano': [], 'Drums': []}
# program_dict = {'Piano': 0, 'Drums': 0}
#
# for idx, track in enumerate(multitrack.tracks):
# if track.is_drum:
# category_list['Drums'].append(idx)
# else:
# category_list['Piano'].append(idx)
# tracks = []
# merged = multitrack[category_list['Piano']].get_merged_pianoroll()
#
# # merged = multitrack.get_merged_pianoroll()
# print(merged.shape)
#
# pr = get_bar_piano_roll(merged)
# print(pr.shape)
# pr_clip = pr[:, :, 24:108]
# print(pr_clip.shape)
# if int(pr_clip.shape[0] % 4) != 0:
# pr_clip = np.delete(pr_clip, np.s_[-int(pr_clip.shape[0] % 4):], axis=0)
# pr_re = pr_clip.reshape(-1, 64, 84, 1)
# print(pr_re.shape)
# save_midis(pr_re, os.path.join(ROOT_PATH, 'MIDI/famous_songs/P2C/merged_midi/YMCA.mid'), 127)
# np.save(os.path.join(ROOT_PATH, 'MIDI/famous_songs/P2C/merged_npy/YMCA.npy'), (pr_re > 0.0))