-
Notifications
You must be signed in to change notification settings - Fork 17
/
trainer_copy.py
308 lines (243 loc) · 13.6 KB
/
trainer_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#author : Suhas Pillai
import numpy as np
from pylab import *
from PIL import Image
import time
import cPickle as cp
from lstm_models_copy import *
from editDistance import *
from multiprocessing import Pool
import dill
def MDLSTM_train(params):
func,args= dill.loads(params)
X_arr,model,dict_conv_param,grd_truth_seq,reg= args[0]
return func(X_arr,model,dict_conv_param,grd_truth_seq,reg)
def MDLSTM_val(params):
func,args= dill.loads(params)
X_arr,model,dict_conv_param,rand_no,grd_truth_seq,reg= args[0]
return func(X_arr,model,dict_conv_param,grd_truth_seq,reg),rand_no
class Trainer:
'''
The class is used to call forward pass and backward pass, along with updating parameters.
'''
def __init__(self):
self.dict_global={'model_1':{'conv':{}},'model_2':{'conv':{},'forward':{},'backward':{},'forward_flip':{},'backward_flip':{},'ff':{}},\
'model_3':{'conv':{},'forward':{},'backward':{},'forward_flip':{},'backward_flip':{},'ff':{}},'model_4':{'forward':{},\
'backward':{},'forward_flip':{},'backward_flip':{},'ff':{}}}
self.loss_list=[]
self.total_prob =np.zeros(80)
def train_parallel(self,X_arr,model,dict_conv_param,grd_truth_seq,reg):
lstm_model_obj = Models()
X = X_arr
loss, grads,check,check_prob = lstm_model_obj.Model_MDLSTM(X,model,dict_conv_param,grd_truth_seq,reg)
return loss,grads,check,check_prob
def val_parallel(self,X_arr,model,dict_conv_param,grd_truth_seq,reg):
lstm_model_obj = Models()
out_probs_val = lstm_model_obj.MDLSTM_model_graves(X_arr,model,dict_conv_param)
return out_probs_val
'''
Train function, it calls train_parallel , to executre parallel jobs across cores
'''
def train(self,dict_data_train,list_data_train, validation_dict,validation_list, model,dict_conv_param,char_to_ix,ix_to_char,max_iter,learning_rate,momentum,reg,batch_size,update,epoch,prev_cer):
file_loss = open('loss.txt','a')
file_loss.write('\n Starting Epoch'+ str(epoch)+'\n')
ed = Check_edit_distance()
self.total_prob = np.zeros(80)
lstm_model_obj = Models()
beta1=0.9
beta2=0.999
total_iter = len(dict_data_train)
channel = 1
counter_iter = 0
count_batch = 0
mean = 206.186924193
std = 58.919279934
start = time.time()
list_data = list_data_train
dict_data = dict_data_train
cer = prev_cer
while count_batch < max_iter:
pool = Pool(16)
end = min(count_batch+batch_size,max_iter)
list_imgs = list_data[count_batch:end]
list_img_arr = []
list_track=[]
flag = True
batch_loss=0.0
corrupt_img_count = 0 #Handle corrupt images
for iter_val in xrange(len(list_imgs)):
try:
X = array(Image.open(list_imgs[iter_val]))
except:
print ('Corrupt Image')
corrupt_img_count = corrupt_img_count + 1
continue
X = (X-mean)/std
seq = dict_data[list_imgs[iter_val]]
grd_truth_seq = [char_to_ix[i] for i in seq]
list_img_arr.append((X,model,dict_conv_param,grd_truth_seq,reg))
for iter_count in xrange(len(list_img_arr)):
list_track.append(pool.apply_async(MDLSTM_train,(dill.dumps((self.train_parallel,[list_img_arr[iter_count]])),)))
pool.close()
pool.join()
for iter_count in xrange(len(list_img_arr)):
loss, grads,check,check_prob = list_track[iter_count].get()
if check :
continue
if flag:
batch_grads = grads
batch_loss=loss
flag = False
self.total_prob +=check_prob
else:
batch_loss +=loss
self.total_prob +=check_prob
for model_name in grads:
sub_model = grads[model_name]
for field in sub_model:
sub_sub_model = sub_model[field]
for key in sub_sub_model:
batch_grads[model_name][field][key]+=grads[model_name][field][key]
batch_size = len(list_img_arr) #If there are corrupt images, then you cannot just use batch size, in future use Netcdf/LDMB to load.
loss = batch_loss/batch_size
if counter_iter >0:
self.loss_list.append(0.01*loss + 0.99 * self.loss_list[-1])
else:
self.loss_list.append(loss)
print 'Loss is = %f and Prev Cer = %f' % (self.loss_list[-1],cer)
#Call after every 10000 samples
if count_batch %10000==0:
file_loss = open('loss.txt','a')
file_loss.write(str(self.loss_list[-1])+'\n')
file_loss.close()
# Calculate CER
# Randomly sample from the validation dataset, to test the CER on alidation data
list_data_val = []
list_track_val=[]
for iter_val_count in xrange(batch_size):
rand_no = np.random.randint(0,len(validation_list))
X = array(Image.open(validation_list[rand_no]))
X = (X-mean)/std
list_data_val.append((X,model,dict_conv_param,rand_no,None,reg))
pool = Pool(16) #create threads for parallel execution
for iter_count in xrange(len(list_data_val)):
list_track_val.append(pool.apply_async(MDLSTM_val,(dill.dumps((self.val_parallel,[list_data_val[iter_count]])),)))
pool.close()
pool.join()
total_dist = 0
total_corr = 0
# calculate CER on validation samples
for iter_count in xrange(len(list_track_val)):
out_probs,rand_no = list_track_val[iter_count].get()
seq = validation_dict[validation_list[rand_no]]
grd_truth_seq = [char_to_ix[i] for i in seq]
hyp,dist = ed.decode_best_path(out_probs, grd_truth_seq)
if len(hyp)>0:
dist, corr = ed.disp(grd_truth_seq,hyp)
total_dist +=dist
total_corr += corr
cer = 100 * (total_dist /(total_dist+total_corr+1e-8))
prev_cer = cer
#-----------------------------------------------------------update parameter----------------------------------------------------------#
cache = 'step_cache'
for model_name in model:
sub_model = batch_grads[model_name]
for field in sub_model:
sub_model_field = sub_model[field]
if update == 'momentum':
if cache not in self.dict_global[model_name][field]:
self.dict_global[model_name][field]['step_cache']={}
for p in sub_model_field:
if p not in self.dict_global[model_name][field]['step_cache']:
self.dict_global[model_name][field]['step_cache'][p] = np.zeros(batch_grads[model_name][field][p].shape)
dx = np.zeros_like(batch_grads[model_name][field][p])
dx=momentum * self.dict_global[model_name][field]['step_cache'][p] - learning_rate* (batch_grads[model_name][field][p]/batch_size)
self.dict_global[model_name][field]['step_cache'][p] = dx
model[model_name][field][p] +=dx
elif update=='sgd':
for p in sub_model_field:
dx = -learning_rate * (batch_grads[model_name][field][p]/batch_size)
model[model_name][field][p] += dx
elif update=="rmsprop":
decay_rate = 0.9
if cache not in self.dict_global[model_name][field]:
self.dict_global[model_name][field]['step_cache']={}
for p in sub_model_field:
if p not in self.dict_global[model_name][field]['step_cache']:
self.dict_global[model_name][field]['step_cache'][p] = np.zeros(batch_grads[model_name][field][p].shape)
dx = np.zeros_like(batch_grads[model_name][field][p])
dx = batch_grads[model_name][field][p]/batch_size
self.dict_global[model_name][field]['step_cache'][p] = decay_rate * self.dict_global[model_name][field]['step_cache'][p] + (1-decay_rate) * dx**2
dx = (-learning_rate * dx) / (np.sqrt(self.dict_global[model_name][field]['step_cache'][p] )+ 1e-8)
model[model_name][field][p] += dx
#count_batch = count_batch+batch_size
batch_size = batch_size + corrupt_img_count
count_batch = count_batch+batch_size
counter_iter = counter_iter+1
end = time.time()
print 'Total Time =%f' % (end-start)
file_parameters = open('dict_parameters','wb')
file_model = open('model_parameters','wb')
cp.dump(self.dict_global,file_parameters)
cp.dump(model,file_model)
file_parameters.close()
file_model.close()
return model,prev_cer
'''
Method : initialize_parameters_MDLSTM
The method is used to initialize parameters of MDLSTM
'''
def initialize_parameters_MDLSTM(self,input_size,hidden_size,weight_scale=0.001,bias_scale=0):
model={}
model['W_xi'] = np.random.randn(input_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_xf'] = np.random.randn(input_size,hidden_size)/np.sqrt(input_size+hidden_size)
model['W_xo']= np.random.randn(input_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_xg']= np.random.randn(input_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_hi_d1']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_hf_d1']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+hidden_size)
model['W_ho_d1']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_hg_d1']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_hi_d2']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_hf_d2']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+hidden_size)
model['W_ho_d2']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['W_hg_d2']= np.random.randn(hidden_size,hidden_size)/np.sqrt(input_size+2*hidden_size)
model['b_i']= bias_scale * np.random.randn(hidden_size)/np.sqrt(input_size+2*hidden_size)
model['b_f_d1']= bias_scale * np.random.randn(hidden_size)/np.sqrt(input_size+hidden_size)
model['b_f_d2']= bias_scale * np.random.randn(hidden_size)/np.sqrt(input_size+hidden_size)
model['b_o']= bias_scale * np.random.randn(hidden_size)/np.sqrt(input_size+2*hidden_size)
model['b_g']= bias_scale * np.random.randn(hidden_size)/np.sqrt(input_size+2*hidden_size)
return model
def cer_val (self,dict_data,list_data, model,dict_conv_param,char_to_ix,ix_to_char,max_iter,reg):
'''
The method is used for calculating cer
'''
ed = Check_edit_distance()
list_data_val = []
list_track_val=[]
mean = 206.186924193
std = 58.919279934
for iter_val_count in xrange(max_iter,len(list_data)):
rand_no = iter_val_count
X = array(Image.open(list_data[rand_no]))
X = (X-mean)/std
list_data_val.append((X,model,dict_conv_param,rand_no,None,reg))
pool = Pool(16)
for iter_count in xrange(len(list_data_val)):
list_track_val.append(pool.apply_async(MDLSTM_val,(dill.dumps((self.val_parallel,[list_data_val[iter_count]])),)))
pool.close()
pool.join()
total_dist = 0
total_corr = 0
total_chars = 0
for iter_count in xrange(len(list_track_val)):
out_probs,rand_no = list_track_val[iter_count].get()
seq = dict_data[list_data[rand_no]]
grd_truth_seq = [char_to_ix[i] for i in seq]
total_chars +=len(grd_truth_seq)
hyp,dist = ed.decode_best_path(out_probs, grd_truth_seq)
if len(hyp)>0:
dist, corr = ed.disp(grd_truth_seq,hyp)
total_dist +=dist
total_corr += corr
cer = 100 * (total_dist /(total_dist+total_corr+1e-8))
return cer