-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
88 lines (81 loc) · 3.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# -*- coding: utf-8 -*-
# @Time : 2021/07/15 21:03 下午
# @Author : lishouxian
# @Email : [email protected]
# @File : main.py
# @Software: VScode
from engines.utils.logger import Logger
from engines.utils.setup_seed import set_seed
from config import use_cuda, cuda_device, configure, mode
from pprint import pprint
import torch
import json
import time
import os
def fold_check(configures):
if configures['checkpoints_dir'] == '':
raise Exception('checkpoints_dir did not set...')
if not os.path.exists(configures['checkpoints_dir']):
print('checkpoints fold not found, creating...')
os.makedirs(configures['checkpoints_dir'])
if not os.path.exists(configures['checkpoints_dir'] + '/logs'):
print('log fold not found, creating...')
os.mkdir(configures['checkpoints_dir'] + '/logs')
if __name__ == '__main__':
set_seed(configure['seed'])
fold_check(configure)
logger = Logger(name='UIE', log_dir=configure['checkpoints_dir'] + '/logs', mode=mode).logger
if use_cuda:
if torch.cuda.is_available():
if cuda_device == -1:
device = torch.device('cuda')
else:
device = torch.device(f'cuda:{cuda_device}')
else:
raise ValueError(
"'use_cuda' set to True when cuda is unavailable."
" Make sure CUDA is available or set use_cuda=False."
)
else:
device = 'cpu'
logger.info(f'device: {device}')
logger.info(json.dumps(configure, indent=2, ensure_ascii=False))
if mode == 'train':
from engines.train import Train
logger.info('mode: train')
train = Train(device, logger)
train.train()
elif mode == 'test':
from engines.predict import Predict
predict = Predict(device, logger)
predict.predict_test()
elif mode == 'interactive_predict':
from engines.predict import Predict
predict = Predict(device, logger)
predict.predict_one('warm up')
while True:
logger.info('please input a sentence (enter [exit] to exit.)')
print('please input a sentence (enter [exit] to exit.)')
sentence = input()
if sentence == 'exit':
break
logger.info('input:{}'.format(str(sentence)))
start_time = time.time()
result = predict.predict_one(sentence)
time_cost = (time.time() - start_time) * 1000
logger.info('putput:{}, cost {}(ms).'.format(str(result), time_cost))
pprint(result)
print('time consumption: %.3f(ms)' % time_cost)
elif mode == 'export_torch':
from engines.utils.convert import extract_and_convert
model_type = configure['model_type']
model_path = os.path.join(model_type, 'torch')
extract_and_convert(model_type, model_path)
print('covert pytorch successful!')
elif mode == 'export_onnx':
from engines.predict import Predict
predict = Predict(device, logger)
predict.export_onnx()
elif mode == 'convert_label_studio':
from engines.utils.data_convert import DataConverter
DataConverter(logger=logger).do_convert()