This repository has been archived by the owner on Apr 11, 2024. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathstancon18_odeWild.html
324 lines (294 loc) · 422 KB
/
stancon18_odeWild.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Sebastian Weber, [email protected]" />
<title>Solving ODEs in the wild: Scalable pharmacometrics with Stan</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
</head>
<body>
<h1 class="title toc-ignore">Solving ODEs in the wild: Scalable pharmacometrics with Stan</h1>
<h4 class="author"><em>Sebastian Weber, <a href="mailto:[email protected]">[email protected]</a></em></h4>
<h4 class="date"><em>20th May 2018</em></h4>
<div id="abstract" class="section level1">
<h1>Abstract</h1>
<p>Pharmacometric modeling involve nonlinear hierarchical models which are most naturally expressed as ordinary differential equations. These class of models lead to a number of challenges which complicate a practical modeling work-flow in Stan. At the example of the public Warfarin data-set I will present solutions to these. I will first illustrate the concept of forcing functions and how to use these efficiently in Stan. Moreover, I will show how the hierarchical structure of the problem is most efficiently taken advantage of to parallelize the model computations which expedites the model evaluation time and allows to scale Stan’s performance to large data-sets given sufficient computing resources.</p>
</div>
<div id="introduction" class="section level1">
<h1>Introduction</h1>
<p>A drug therapy aims to treat a disease state. The drug is administered through some route in order to reach some location in the human body where the drug is active. The the human body is exposed to the drug and a readily accessible measure for drug exposure is the drug concentration in blood which is often taken as surrogate for exposure at the target tissue. The key to a successful therapy is to attain quickly an adequate exposure which is high enough for a sufficient effect to be reached, but low enough to avoid undesired adverse affects. This defines the so-called therapeutic window within which one aims to maintain patients using an adequate dosing regimen.</p>
<p>Pharmacometrics now aims to model the longitudinal history of a patient being under drug treatment. That is, one models how drug intake translates into a drug concentration (pharmacokinetics) and how drug concentration drives some effect (pharmacodynamics) over time. These processes are most naturally stated as ordinary differential equations (ODEs) where the phamacokinetics (PK) follows mass-action kinetics and the pharmacodynamics (PD) is modeled using a link process relating drug concentration (PK) with drug effect (PD).</p>
<p>This translates mathematically into a forced ODE problem. The PK model describes the so-called absorption, distribution, metabolism and elimination process (ADME). The PK model itself is externally driven by the input into the system which is the intake of drug amount over time. The intake of drug amount is referred to as dosing regimen and is known as data in advance or recorded during the trial. The PD model then describes the effect of the drug concentration on some measure of efficacy or safety.</p>
<p>Oftentimes these problems are approached in a two-step manner. First the PK model is informed using blood concentration data. Then the model parameters are fixed and the PD model is informed. Thus, the PK model becomes a forcing function to the PD model. The “clean” Bayesian solution is a joint fit of the combined model, but oftentimes a two-step approach is much quicker to implement and it gives a great example for forcing functions here.</p>
<p>In the following I will first introduce the warfarin data-set, then illustrate the concept of forcing functions and how to introduce them efficiently in Stan. Finally, I will show how the hierarchical problem structure can be used most efficiently to parallelize computations and expedite the model evaluation time for the example at hand, but most importantly enable Stan to scale it’s performance to large data sets when given sufficient computing resources.</p>
<div id="anticoagulant-warfarin" class="section level2">
<h2>Anticoagulant Warfarin</h2>
<div id="pharmacokinetics" class="section level3">
<h3>Pharmacokinetics</h3>
<p>Warfarin is an anticoagulant (blood thinner) used to prevent strokes in certain conditions. The pharmacokinetics of Warfarin <span class="citation">(O’Reilly, Aggeler, and Leong 1963,<span class="citation">Holford (1986)</span>)</span> is well-described by a one compartmental model which states that drug amounts (mass) is cleared from a compartment via a first order process,</p>
<p><span class="math display">\[ d(C_i(t) \, V_i)/dt = - Cl_i \, C_i(t) + f_{in,i}(t).\]</span></p>
<p>Here the index <span class="math inline">\(i\)</span> labels patients and the quantities introduced are</p>
<ul>
<li><span class="math inline">\(C_i(t)\)</span>: Drug concentration in the central compartment at time-point <span class="math inline">\(t\)</span>.</li>
<li><span class="math inline">\(V_i\)</span>: Apparent volume of the central compartment.</li>
<li><span class="math inline">\(Cl_i\)</span>: Clearance of the drug from the central compartment in units of mass per volume.</li>
<li><span class="math inline">\(f_{in,i}(t)\)</span>: Uptake of drug into the system which is determined by the route of administration.</li>
</ul>
<p>Note that while we measure <em>concentrations</em> <span class="math inline">\(C_i(t)\)</span> of some patient <span class="math inline">\(i\)</span>, the mass-action kinetics holds for <em>mass</em>. Moreover, the uptake of drug may occur through various routes like intra-venous injections, intra-venous infusions or oral administration. The example data set studied a single orally administered Warfarin dose of 1.5mg/kg. Oral administration is usually well-described by a first order process itself (input rate is proportional to <span class="math inline">\(k_{a,i}\)</span>) such that the full PK system is most conveniently written as</p>
<p><span class="math display">\[ d(a_i(t))/dt = - k_{a,i} \, a_i(t)\]</span> <span class="math display">\[ d(C_i(t) \, V_i)/dt = - Cl_i \, C_i(t) + k_{a,i} \, a_i(t).\]</span></p>
<p>Fortunately, this ODE system can solved analytically. After administration of a single dose at <span class="math inline">\(t=0\)</span> the solution is</p>
<p><span class="math display">\[ C_i(t) = \frac{D_i}{V_i} \, \frac{k_{a,i}}{k_{a,i} - Cl_i/V_i}
\left( \exp{(-Cl_i/V_i \, t)} - \exp{(-k_{a,i} \, t)}\right).\]</span></p>
<p>However, Warfarin has (as many drugs) an additional important property which is a delay of the drug-uptake. Thus, administering the drug at <span class="math inline">\(t=t_0\)</span> does not cause an immediate diffusion of the drug to the central compartment, but rather it takes some amount of time <span class="math inline">\(t_{lag}\)</span> to see a non-zero concentration in the main compartment. The need for a time lag suggests that the actual absorbtion process is likely more involved than a simple first process, but a lag time is adequate here to account for it given that the interest is in time-scales much larger than the lag time. One approach to account for the lag time is to infer <span class="math inline">\(t_{lag}\)</span> and then shift the analytic solution without a lag time by this amount. So the starting time of drug uptake is shifted by <span class="math inline">\(t_{lag}\)</span>. While common in practice, this introduces the need for a discontinuous if-statement which depends on a parameter. This is not ideal for the performance of any gradient based approach like Stan’s NUTS.</p>
<p>The data set we consider comprises 32 patients. For 14 patients blood samples measuring the concentration in the central compartement have been taken starting from 0.5h post oral dose administration while for 18 patients sampling started at 24h post oral dose administration. The hierarchical model for the parameters is</p>
<p><span class="math display">\[ \mbox{logit}^{-1}(t_{lag,i}/t_{lag,max}) \sim N(\nu_1, \sigma_1^2)\]</span> <span class="math display">\[ \log(k_{a,i}) \sim N(\nu_2, \sigma_2^2) \]</span> <span class="math display">\[ \log(Cl_i) \sim N(\nu_3 + 3/4 \, \log(wt_i/70kg), \sigma_3^2)\]</span> <span class="math display">\[ \log(V_i) \sim N(\nu_4 + \log(wt_i/70kg), \sigma_4^2).\]</span></p>
<p>The model takes allometric scaling into account for the clearance and volume. This scaling accounts for a size dependent metabolic activity of the organs involved in eliminating the drug and the slopes are derived from first principles. The fit of the PK model is shown below for 4 patients as an example and for the full population. All codes are provided in this notebook, but in the following we will concentrate on the pharmacodynamic model of Warfarin. The parameters of the PK model are in the following assumed known and they are set to the median values of the PK model fit.</p>
<p><img src="" /><!-- --></p>
<p><img src="" /><!-- --></p>
</div>
<div id="pharmacodynamics" class="section level3">
<h3>Pharmacodynamics</h3>
<p>The effect of Warfarin is to thin blood and a quantitative measure is its effect on the prothrombin complex levels in relation to normal levels.</p>
<p>In the following, the pharmacodynamics will be conditioned on the pharmacokinetic model and since we have fixed the model parameters, the PK model is effectively a forcing function to the PD model. Thus, the concentration <span class="math inline">\(C_i(t)\)</span> at time <span class="math inline">\(t\)</span> for patient <span class="math inline">\(i\)</span> can be treated as data within the context of the PD model. An appropriate PD model for the effect of Warfarin on prothrombin complex levels is the turn-over model. The turn-over model is semi-mechanistic since it is certainly an over-simplification of the biological processes, but it is still motivated by biological rationale. Specifically, the response <span class="math inline">\(R_i(t)\)</span> is considered to be represented by a compartment which has a zero-order influx <span class="math inline">\(k_{in,i}\)</span> and a first order out-flux <span class="math inline">\(k_{out,i}\)</span>. The drug-effect may enter this model through an inhibition or stimulation of either process. For Warfarin <span class="citation">(O’Reilly and Aggeler 1968,<span class="citation">Holford (1986)</span>)</span>, an inhibition of the zero-order <span class="math inline">\(k_{in}\)</span> is an adequate choice,</p>
<p><span class="math display">\[ dR_i/dt = k_{in,i} \, (1 - \frac{C_i(t)}{C_i(t) + EC50_i}) - k_{out,i} \, R_i \]</span> <span class="math display">\[ \Leftrightarrow dR_i/dt = k_{in,i} \, \left\{1 - \mbox{logit}^{-1}[\log(C_i(t)) - \log(EC50_i)]\right\} - k_{out,i} \, R_i. \]</span></p>
<p>Whenever the drug concentration is equal to the <span class="math inline">\(EC50_i\)</span> value, then half of the full drug effect is reached. Furthermore, in absence of drug, the response <span class="math inline">\(R_i\)</span> will reach a steady-state which is <span class="math inline">\(R_{i,ss} = \frac{k_{in,i}}{k_{out,i}}\)</span> (just set <span class="math inline">\(dR_i/dt=0\)</span>). Since at <span class="math inline">\(t=0\)</span> the human body is free of any drug and we assume that at <span class="math inline">\(t=0\)</span> the system is in steady-state such that the response at <span class="math inline">\(t=0\)</span> is used to set <span class="math inline">\(k_{in,i}\)</span> by multiplication with <span class="math inline">\(k_{out,i}\)</span> (so we do not fit <span class="math inline">\(k_{in}\)</span> as an independent parameter). The hierarchial model structure for the PD model is</p>
<p><span class="math display">\[ \log(R_{0,i}) \sim N(\theta_1, \omega_1^2)\]</span> <span class="math display">\[ \log(1/k_{out,i}) \sim N(\theta_2, \omega_2^2)\]</span> <span class="math display">\[ \log(EC50_{i}) \sim N(\theta_3, \omega_3^2).\]</span></p>
<p>In this form, the turn-over model describes a reduction of the response variable as a result of drug treatment, since the value of <span class="math inline">\(k_{in}\)</span> is decreased through the drug. This is in line with the raw data:</p>
<p><img src="" /><!-- --></p>
<p>The ODE functor which defines the turn-over model could look like shown below when coded in Stan:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"> real[] <span class="kw">turnover_kin_inhib_1</span>(real t, real[] R, real[] theta, real[] x_r, int[] x_i) {
real ldose =<span class="st"> </span>x_r[<span class="dv">1</span>];
real llag =<span class="st"> </span>x_r[<span class="dv">2</span>];
real lka =<span class="st"> </span>x_r[<span class="dv">3</span>];
real lCl =<span class="st"> </span>x_r[<span class="dv">4</span>];
real lV =<span class="st"> </span>x_r[<span class="dv">5</span>];
real lconc =<span class="st"> </span><span class="kw">pk_1cmt_oral_tlag</span>([t]<span class="st">', ldose, llag, lka, lCl, lV)[1];</span>
<span class="st"> real lkout = -theta[2];</span>
<span class="st"> real lkin = theta[1] + lkout;</span>
<span class="st"> real lEC50 = theta[3];</span>
<span class="st"> real lS = log_inv_logit(lconc - lEC50);</span>
<span class="st"> </span>
<span class="st"> // dRdt = kin * (1 - C/(C + EC50)) - R * kout</span>
<span class="st"> return { exp(lkin + log1m_exp(lS)) - R[1] * exp(lkout) };</span>
<span class="st"> }</span></code></pre></div>
<p>It is a good practice to visualize the ODE solution with typical values (for example those values used to define prior means) before using the ODE functor inside Stan. In R this can be achieved through the use of <code>deSolve</code> and <code>expose_stan_functions</code>:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(deSolve)
## ensure we cache the binaries of the compiled functions
<span class="kw">options</span>(<span class="dt">rcpp.cache.dir=</span><span class="st">"."</span>)
<span class="kw">expose_stan_functions</span>(pd_model1_gen)
## model function passed to deSolve
model <-<span class="st"> </span><span class="cf">function</span>(time, y, theta) {
## use dR/dt ODE functor defined in Stan model
dR <-<span class="st"> </span><span class="kw">turnover_kin_inhib_1</span>(time, y[<span class="dv">1</span>], theta, x_r, x_i)
<span class="kw">list</span>(<span class="kw">c</span>(dR))
}
theta <-<span class="st"> </span><span class="kw">log</span>(<span class="kw">c</span>(<span class="dv">100</span>, <span class="dv">20</span>, <span class="fl">0.5</span>))
x_r <-<span class="st"> </span><span class="kw">log</span>(<span class="kw">c</span>(<span class="dv">100</span>, <span class="fl">0.7</span>, <span class="fl">1.1</span>, <span class="fl">0.13</span>, <span class="dv">8</span>))
x_i <-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>)
initial <-<span class="st"> </span><span class="kw">c</span>(<span class="dt">R=</span><span class="dv">100</span>)
times <-<span class="st"> </span><span class="kw">seq</span>(<span class="dv">0</span>, <span class="dv">200</span>, <span class="dt">by=</span><span class="dv">1</span>)
sim <-<span class="st"> </span><span class="kw">ode</span>(<span class="dt">y=</span>initial, <span class="dt">times=</span>times, <span class="dt">func=</span>model, <span class="dt">parms=</span>theta)
<span class="kw">plot</span>(sim, <span class="dt">main=</span><span class="st">"Turn-over kin inhibition model, R(t)"</span>)</code></pre></div>
<p><img src="" /><!-- --></p>
<p>This shape of the function roughly resembles the raw data. However, the time to fit this relatively small data set is rather excessive:</p>
<table>
<thead>
<tr class="header">
<th></th>
<th align="right">warmup</th>
<th align="right">sample</th>
<th align="right">Sum</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>chain:1</td>
<td align="right">13.99</td>
<td align="right">2.06</td>
<td align="right">16.04</td>
</tr>
<tr class="even">
<td>chain:2</td>
<td align="right">12.11</td>
<td align="right">2.07</td>
<td align="right">14.18</td>
</tr>
<tr class="odd">
<td>chain:3</td>
<td align="right">14.27</td>
<td align="right">2.01</td>
<td align="right">16.28</td>
</tr>
<tr class="even">
<td>chain:4</td>
<td align="right">12.25</td>
<td align="right">2.09</td>
<td align="right">14.34</td>
</tr>
</tbody>
</table>
<p>In words, it takes for only 32 patients about 15 minutes for 250 warmup and 250 sampling iterations on a modern machine used inside a high-performance cluster.</p>
<p>The above formulation of the problem tickles a few issues of the current Stan language which we can avoid. In the current Stan language all variable definitions inside a function are automatically considered as parameters if the output of the function is involving parameters of the model, which happens whenever any of the arguments of a function is a parameter. Recall, that the major numerical cost in any Stan program is the gradient calculation of the log-likelihood wrt to all parameters. Inspecting the ODE functor above reveals that all the parameters of the PK model are implicitly turned into parameters due to their declaration in a function which returns a result involving parameters. So, let’s reformulate the ODE functor without these intermediate declarations as shown below:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"> real[] <span class="kw">turnover_kin_inhib_2</span>(real t, real[] R, real[] theta, real[] x_r, int[] x_i) {
<span class="op">/</span><span class="er">/</span>real ldose =<span class="st"> </span>x_r[<span class="dv">1</span>];
<span class="op">/</span><span class="er">/</span>real llag =<span class="st"> </span>x_r[<span class="dv">2</span>];
<span class="op">/</span><span class="er">/</span>real lka =<span class="st"> </span>x_r[<span class="dv">3</span>];
<span class="op">/</span><span class="er">/</span>real lCl =<span class="st"> </span>x_r[<span class="dv">4</span>];
<span class="op">/</span><span class="er">/</span>real lV =<span class="st"> </span>x_r[<span class="dv">5</span>];
real lconc =<span class="st"> </span><span class="kw">pk_1cmt_oral_tlag_t</span>(t, x_r[<span class="dv">1</span>], x_r[<span class="dv">2</span>], x_r[<span class="dv">3</span>], x_r[<span class="dv">4</span>], x_r[<span class="dv">5</span>]);
real lkout =<span class="st"> </span><span class="op">-</span>theta[<span class="dv">2</span>];
real lkin =<span class="st"> </span>theta[<span class="dv">1</span>] <span class="op">+</span><span class="st"> </span>lkout;
real lEC50 =<span class="st"> </span>theta[<span class="dv">3</span>];
real lS =<span class="st"> </span><span class="kw">log_inv_logit</span>(lconc <span class="op">-</span><span class="st"> </span>lEC50);
<span class="op">/</span><span class="er">/</span><span class="st"> </span>dRdt =<span class="st"> </span>kin <span class="op">*</span><span class="st"> </span>(<span class="dv">1</span> <span class="op">-</span><span class="st"> </span>C<span class="op">/</span>(C <span class="op">+</span><span class="st"> </span>EC50)) <span class="op">-</span><span class="st"> </span>R <span class="op">*</span><span class="st"> </span>kout
return { <span class="kw">exp</span>(lkin <span class="op">+</span><span class="st"> </span><span class="kw">log1m_exp</span>(lS)) <span class="op">-</span><span class="st"> </span>R[<span class="dv">1</span>] <span class="op">*</span><span class="st"> </span><span class="kw">exp</span>(lkout) };
}</code></pre></div>
<p>Doing so leads to less readable code, but it does avoid that the PK model is evaluated with variables which are considered as parameters. In effect, the evaluation of the PK model is much cheaper within this ODE functor. Running now the same model with this modified ODE functor yields a more than doubling of the execution speed:</p>
<table>
<thead>
<tr class="header">
<th></th>
<th align="right">warmup</th>
<th align="right">sample</th>
<th align="right">Sum</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>chain:1</td>
<td align="right">5.56</td>
<td align="right">1.02</td>
<td align="right">6.58</td>
</tr>
<tr class="even">
<td>chain:2</td>
<td align="right">6.11</td>
<td align="right">0.95</td>
<td align="right">7.06</td>
</tr>
<tr class="odd">
<td>chain:3</td>
<td align="right">6.25</td>
<td align="right">0.96</td>
<td align="right">7.21</td>
</tr>
<tr class="even">
<td>chain:4</td>
<td align="right">6.37</td>
<td align="right">0.99</td>
<td align="right">7.36</td>
</tr>
</tbody>
</table>
<p>Fortunately, the Stan 3 language proposal currently worked on will allow to deliberately declare which variables are data for sure and which ones not. Thus, the rather cumbersome second version shouldn’t be needed in the future with Stan 3.</p>
<p>Finally, here are the posterior predictive distributions for the first 4 patients in the data set and below the posterior predictive for the population with the raw data of all patients.</p>
<p><img src="" /><!-- --></p>
<p><img src="" /><!-- --></p>
</div>
</div>
<div id="scalable-pharmacometrics" class="section level2">
<h2>Scalable Pharmacometrics</h2>
<p>The example presented so far comprises a very small data set and used on of the simplest PD models. While the presentation so far is no over-simplification, the major issue is the inability to scale Stan’s performance to larger data sets. However, pharmacometric models are by default hierarchical such that patients are modeled exchangeable to one another. Thus the likelihood of a given patient can be evaluated in independence of all other patients. This hierarchical structure can be taken advantage of using the new <code>map_rect</code> facility in Stan. This function applies a user-defined defined function to a set of parameters which are in rectangular data storage format (hence the name of the function). Since each evaluation is independent of all others, these evaluations can be performed in parallel using either threading or the message passing interface (MPI). Threading has less operating system requirements in comparison to MPI, but is limited to the CPUs of the machine a given chain is run on while MPI can be used across multiple machines (typically part of a large high-performance cluster). The <code>map_rect</code> facility is used most efficiently if the function evaluated per subject (or whatever unit) directly returns the log-probability density contribution of the respective subject. This minimizes the communication between the different processes.</p>
<p>The function for the Warfarin example could look like this:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"> vector <span class="kw">lpdf_subject</span>(vector phi, vector eta, real[] x_r, int[] x_i) {
vector[<span class="dv">3</span>] theta =<span class="st"> </span>phi[<span class="dv">1</span><span class="op">:</span><span class="dv">3</span>];
vector[<span class="dv">3</span>] sigma_eta =<span class="st"> </span>phi[<span class="dv">4</span><span class="op">:</span><span class="dv">6</span>];
real sigma_y =<span class="st"> </span>phi[<span class="dv">7</span>];
real kappa =<span class="st"> </span>phi[<span class="dv">8</span>];
real eta_cov[<span class="dv">3</span>] =<span class="st"> </span><span class="kw">to_array_1d</span>(theta <span class="op">+</span><span class="st"> </span>eta .<span class="op">*</span><span class="st"> </span>sigma_eta);
int start =<span class="st"> </span>x_i[<span class="dv">1</span>];
int end =<span class="st"> </span>x_i[<span class="dv">2</span>]<span class="op">-</span><span class="dv">1</span>;
int Ndv =<span class="st"> </span>x_i[<span class="dv">3</span>];
int N =<span class="st"> </span>end<span class="op">-</span>start<span class="op">+</span><span class="dv">1</span>;
real mu_temp[N,<span class="dv">1</span>] =<span class="st"> </span><span class="kw">integrate_ode_rk45</span>(turnover_kin_inhib_<span class="dv">2</span>,
{ <span class="kw">exp</span>(eta_cov[<span class="dv">1</span>]) }, <span class="op">-</span><span class="fl">1E-4</span>,
x_r[<span class="dv">7</span><span class="op">+</span>start<span class="op">-</span><span class="dv">1</span> <span class="op">:</span><span class="st"> </span><span class="dv">7</span><span class="op">+</span>end<span class="op">-</span><span class="dv">1</span>], <span class="op">/</span><span class="er">/</span><span class="st"> </span>time
eta_cov,
x_r[<span class="dv">1</span><span class="op">:</span><span class="dv">5</span>], <span class="op">/</span><span class="er">/</span><span class="st"> </span>PK parameters
x_i[<span class="dv">1</span><span class="op">:</span><span class="dv">0</span>],
<span class="fl">1E-5</span>, <span class="fl">1E-3</span>, <span class="dv">500</span>
);
vector[N] mu =<span class="st"> </span><span class="kw">to_vector</span>(mu_temp[<span class="op">:</span>,<span class="dv">1</span>]);
return [ <span class="kw">gamma2_overdisp_array_lpdf</span>(x_r[<span class="dv">7</span><span class="op">+</span>Ndv<span class="op">+</span>start<span class="op">-</span><span class="dv">1</span> <span class="op">:</span><span class="st"> </span><span class="dv">7</span><span class="op">+</span>Ndv<span class="op">+</span>end<span class="op">-</span><span class="dv">1</span>]<span class="op">|</span><span class="st"> </span>mu, sigma_y, kappa <span class="op">*</span><span class="st"> </span>x_r[<span class="dv">6</span>] ) ]<span class="st">';</span>
<span class="st"> }</span></code></pre></div>
<p>In the <code>model</code> block this can then be called via:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"> target <span class="op">+</span><span class="er">=</span><span class="st"> </span><span class="kw">map_rect</span>(lpdf_subject, phi, Eta, x_r, x_i);</code></pre></div>
<p>The speedup for this specific example is shown below when using threading or MPI on a machine with upto 16 cores.</p>
<p><img src="" /><!-- --></p>
<p>As can be seen, the total wallclock time can be reduced to less than 1 minute when using 16 cores. Moreover, the MPI backend outperforms the threading backend considerably for a single core run and in terms of better scalability. Currently, the thread implementation in Stan relies on C++11 programming language standards. These do defer many implementation details to the compiler used. This will hopefully leave some room for future improvements of the code. From these experiments MPI should be preferred over threading despite the larger burden to setup MPI in comparison to threading.</p>
<p>What is important to emphasize is that the <code>map_rect</code> approach enables to <strong>scale</strong> the performance of a given Stan program and data set. This scalability allows to adapt performance needs in such a way that we get reasonable run times needed for a productive, iterative explorative modeling process (assuming availability of sufficient hardware ressources). As a rule of thumb, hierarchical models with a large computation cost per unit, like ODE models, greatly benefit from the use of <code>map_rect</code>. For a large problem involving <span class="math inline">\(>1300\)</span> patients speedups of up to 61x on 80 cores haven been measured (2.5 days down to 1h computation time) <span class="citation">(Weber 2018)</span>.</p>
</div>
</div>
<div id="conclusion" class="section level1">
<h1>Conclusion</h1>
<p>Stan has come a long way and has as of today all required components for application to realistic pharmacometric problems. These are numerically very challenging and have influenced the Stan development in some aspects considerably (non-stiff/stiff ODE solvers, matrix exponential and now within-chain parallelization). With the recent addition of within-chain parallelization Stan can finally be used as a practical tool for iterative modeling with realistic data-sets as used in pharmacometrics. The <code>map_rect</code> function is currently somewhat clunky to use due to the need for packing and unpacking of parameters and data, but the additional work is well offset by the massive performance gain for large problems whenever sufficient CPU cores are available to the Stan modeler. Once Stan 3 introduces closures for functions, the in-convenient packing/unpacking coding will hopefully be remedied to some extent.</p>
</div>
<div id="references" class="section level1 unnumbered">
<h1>References</h1>
<div id="refs" class="references">
<div id="ref-Holford1986">
<p>Holford, Nicholas H.G. 1986. “Clinical Pharmacokinetics and Pharmacodynamics of Warfarin: Understanding the Dose-Effect Relationship.” Springer International Publishing. doi:<a href="https://doi.org/10.2165/00003088-198611060-00005">10.2165/00003088-198611060-00005</a>.</p>
</div>
<div id="ref-OReilly1963">
<p>O’Reilly, R A, P M Aggeler, and L S Leong. 1963. “Studies on the coumarin antocoagulant drugs: The pharmacodynamics of warfarin in man.” <em>J. Clin. Invest.</em> 42 (10). American Society for Clinical Investigation: 1542–51. doi:<a href="https://doi.org/10.1172/JCI104839">10.1172/JCI104839</a>.</p>
</div>
<div id="ref-OReilly1968">
<p>O’Reilly, R A, and P M Aggeler. 1968. “Studies on coumarin anticoagulant drugs. Initiation of warfarin therapy without a loading dose.” <em>Circulation</em> 38 (1). American Heart Association, Inc.: 169–77. doi:<a href="https://doi.org/10.1161/01.CIR.38.1.169">10.1161/01.CIR.38.1.169</a>.</p>
</div>
<div id="ref-Weber2018">
<p>Weber, Sebastian. 2018. “Supporting drug development as a Bayesian in due time?!” In <em>PAGE Meet. 2018</em>. Montreux, Switzerland. <a href="https://www.page-meeting.org/default.asp?abstract=8735" class="uri">https://www.page-meeting.org/default.asp?abstract=8735</a>.</p>
</div>
</div>
</div>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>