forked from nnzhan/Graph-WaveNet
-
Notifications
You must be signed in to change notification settings - Fork 24
/
util.py
260 lines (223 loc) · 10 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import argparse
import pickle
import numpy as np
import os
import pandas as pd
import scipy.sparse as sp
import torch
from scipy.sparse import linalg
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
class DataLoader(object):
def __init__(self, xs, ys, batch_size, pad_with_last_sample=True):
"""
:param xs:
:param ys:
:param batch_size:
:param pad_with_last_sample: pad with the last sample to make number of samples divisible to batch_size.
"""
self.batch_size = batch_size
self.current_ind = 0
if pad_with_last_sample:
num_padding = (batch_size - (len(xs) % batch_size)) % batch_size
x_padding = np.repeat(xs[-1:], num_padding, axis=0)
y_padding = np.repeat(ys[-1:], num_padding, axis=0)
xs = np.concatenate([xs, x_padding], axis=0)
ys = np.concatenate([ys, y_padding], axis=0)
self.size = len(xs)
self.num_batch = int(self.size // self.batch_size)
self.xs = xs
self.ys = ys
def shuffle(self):
permutation = np.random.permutation(self.size)
xs, ys = self.xs[permutation], self.ys[permutation]
self.xs = xs
self.ys = ys
def get_iterator(self):
self.current_ind = 0
def _wrapper():
while self.current_ind < self.num_batch:
start_ind = self.batch_size * self.current_ind
end_ind = min(self.size, self.batch_size * (self.current_ind + 1))
x_i = self.xs[start_ind: end_ind, ...]
y_i = self.ys[start_ind: end_ind, ...]
yield (x_i, y_i)
self.current_ind += 1
return _wrapper()
class StandardScaler():
def __init__(self, mean, std, fill_zeroes=True):
self.mean = mean
self.std = std
self.fill_zeroes = fill_zeroes
def transform(self, data):
if self.fill_zeroes:
mask = (data == 0)
data[mask] = self.mean
return (data - self.mean) / self.std
def inverse_transform(self, data):
return (data * self.std) + self.mean
def sym_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).astype(np.float32).todense()
def asym_adj(adj):
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1)).flatten()
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat= sp.diags(d_inv)
return d_mat.dot(adj).astype(np.float32).todense()
def calculate_normalized_laplacian(adj):
"""
# L = D^-1/2 (D-A) D^-1/2 = I - D^-1/2 A D^-1/2
# D = diag(A 1)
:param adj:
:return:
"""
adj = sp.coo_matrix(adj)
d = np.array(adj.sum(1))
d_inv_sqrt = np.power(d, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
normalized_laplacian = sp.eye(adj.shape[0]) - adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
return normalized_laplacian
def calculate_scaled_laplacian(adj_mx, lambda_max=2, undirected=True):
if undirected:
adj_mx = np.maximum.reduce([adj_mx, adj_mx.T])
L = calculate_normalized_laplacian(adj_mx)
if lambda_max is None:
lambda_max, _ = linalg.eigsh(L, 1, which='LM')
lambda_max = lambda_max[0]
L = sp.csr_matrix(L)
M, _ = L.shape
I = sp.identity(M, format='csr', dtype=L.dtype)
L = (2 / lambda_max * L) - I
return L.astype(np.float32).todense()
def load_pickle(pickle_file):
try:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f)
except UnicodeDecodeError as e:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f, encoding='latin1')
except Exception as e:
print('Unable to load data ', pickle_file, ':', e)
raise
return pickle_data
ADJ_CHOICES = ['scalap', 'normlap', 'symnadj', 'transition', 'identity']
def load_adj(pkl_filename, adjtype):
sensor_ids, sensor_id_to_ind, adj_mx = load_pickle(pkl_filename)
if adjtype == "scalap":
adj = [calculate_scaled_laplacian(adj_mx)]
elif adjtype == "normlap":
adj = [calculate_normalized_laplacian(adj_mx).astype(np.float32).todense()]
elif adjtype == "symnadj":
adj = [sym_adj(adj_mx)]
elif adjtype == "transition":
adj = [asym_adj(adj_mx)]
elif adjtype == "doubletransition":
adj = [asym_adj(adj_mx), asym_adj(np.transpose(adj_mx))]
elif adjtype == "identity":
adj = [np.diag(np.ones(adj_mx.shape[0])).astype(np.float32)]
else:
error = 0
assert error, "adj type not defined"
return sensor_ids, sensor_id_to_ind, adj
def load_dataset(dataset_dir, batch_size, valid_batch_size=None, test_batch_size=None, n_obs=None, fill_zeroes=True):
data = {}
for category in ['train', 'val', 'test']:
cat_data = np.load(os.path.join(dataset_dir, category + '.npz'))
data['x_' + category] = cat_data['x']
data['y_' + category] = cat_data['y']
if n_obs is not None:
data['x_' + category] = data['x_' + category][:n_obs]
data['y_' + category] = data['y_' + category][:n_obs]
scaler = StandardScaler(mean=data['x_train'][..., 0].mean(), std=data['x_train'][..., 0].std(), fill_zeroes=fill_zeroes)
# Data format
for category in ['train', 'val', 'test']:
data['x_' + category][..., 0] = scaler.transform(data['x_' + category][..., 0])
data['train_loader'] = DataLoader(data['x_train'], data['y_train'], batch_size)
data['val_loader'] = DataLoader(data['x_val'], data['y_val'], valid_batch_size)
data['test_loader'] = DataLoader(data['x_test'], data['y_test'], test_batch_size)
data['scaler'] = scaler
return data
def calc_metrics(preds, labels, null_val=0.):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean(mask)
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
mse = (preds - labels) ** 2
mae = torch.abs(preds-labels)
mape = mae / labels
mae, mape, mse = [mask_and_fillna(l, mask) for l in [mae, mape, mse]]
rmse = torch.sqrt(mse)
return mae, mape, rmse
def mask_and_fillna(loss, mask):
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def calc_tstep_metrics(model, device, test_loader, scaler, realy, seq_length) -> pd.DataFrame:
model.eval()
outputs = []
for _, (x, __) in enumerate(test_loader.get_iterator()):
testx = torch.Tensor(x).to(device).transpose(1, 3)
with torch.no_grad():
preds = model(testx).transpose(1, 3)
outputs.append(preds.squeeze(1))
yhat = torch.cat(outputs, dim=0)[:realy.size(0), ...]
test_met = []
for i in range(seq_length):
pred = scaler.inverse_transform(yhat[:, :, i])
pred = torch.clamp(pred, min=0., max=70.)
real = realy[:, :, i]
test_met.append([x.item() for x in calc_metrics(pred, real)])
test_met_df = pd.DataFrame(test_met, columns=['mae', 'mape', 'rmse']).rename_axis('t')
return test_met_df, yhat
def _to_ser(arr):
return pd.DataFrame(arr.cpu().detach().numpy()).stack().rename_axis(['obs', 'sensor_id'])
def make_pred_df(realy, yhat, scaler, seq_length):
df = pd.DataFrame(dict(y_last=_to_ser(realy[:, :, seq_length - 1]),
yhat_last=_to_ser(scaler.inverse_transform(yhat[:, :, seq_length - 1])),
y_3=_to_ser(realy[:, :, 2]),
yhat_3=_to_ser(scaler.inverse_transform(yhat[:, :, 2]))))
return df
def make_graph_inputs(args, device):
sensor_ids, sensor_id_to_ind, adj_mx = load_adj(args.adjdata, args.adjtype)
supports = [torch.tensor(i).to(device) for i in adj_mx]
aptinit = None if args.randomadj else supports[0] # ignored without do_graph_conv and add_apt_adj
if args.aptonly:
if not args.addaptadj and args.do_graph_conv: raise ValueError(
'WARNING: not using adjacency matrix')
supports = None
return aptinit, supports
def get_shared_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda:0', help='')
parser.add_argument('--data', type=str, default='data/METR-LA', help='data path')
parser.add_argument('--adjdata', type=str, default='data/sensor_graph/adj_mx.pkl',
help='adj data path')
parser.add_argument('--adjtype', type=str, default='doubletransition', help='adj type', choices=ADJ_CHOICES)
parser.add_argument('--do_graph_conv', action='store_true',
help='whether to add graph convolution layer')
parser.add_argument('--aptonly', action='store_true', help='whether only adaptive adj')
parser.add_argument('--addaptadj', action='store_true', help='whether add adaptive adj')
parser.add_argument('--randomadj', action='store_true',
help='whether random initialize adaptive adj')
parser.add_argument('--seq_length', type=int, default=12, help='')
parser.add_argument('--nhid', type=int, default=40, help='Number of channels for internal conv')
parser.add_argument('--in_dim', type=int, default=2, help='inputs dimension')
parser.add_argument('--num_nodes', type=int, default=207, help='number of nodes')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--dropout', type=float, default=0.3, help='dropout rate')
parser.add_argument('--n_obs', default=None, help='Only use this many observations. For unit testing.')
parser.add_argument('--apt_size', default=10, type=int)
parser.add_argument('--cat_feat_gc', action='store_true')
parser.add_argument('--fill_zeroes', action='store_true')
parser.add_argument('--checkpoint', type=str, help='')
return parser