-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoto_z.f90
executable file
·175 lines (137 loc) · 5.23 KB
/
moto_z.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
subroutine moto_z(RHS_x)
!-------------------------------------------------------------!
! F. Califano, 2006 !
! !
! Eq. MOTO componente z: !
! !
! Div[ BB - n(UU + de^2 jj) - P_tot * Ident ] !
! !
! Axz = - Den * (Uix * Uiz + de2 * Uex * Uez) + Bx Bz !
! Ayz = - Den * (Uiy * Uiz + de2 * Uey * Uez) + By Bz !
! Azz = - Den * (Uiz * Uiz + de2 * Uez * Uez) + Bz Bz - P_tot !
!-------------------------------------------------------------!
!**************************************************
! MPI PARALLEL VERSION: VALENTINI-FAGANELLO 2009
! 3D PARALLE VERSION: FAGANELLO 2010
! LANDAU-FLUID VERSION FAGANELLO 2011
!
! FLR-Landau-Fluid VERSION: Cerri 2011
!
!**************************************************
use parameter_mod
use box_mod
use deriv_mod
use fields_UJ_mod
use fields_DP_mod
use fields_EB_mod
use dom_distr_mod
use parallel_mod
IMPLICIT NONE
integer :: ix, iy, iz
REAL(dp),DIMENSION (nxl,nyl,nzl) :: RHS_x
REAL(dp), ALLOCATABLE :: zy(:),zx(:), zz(:)
REAL(dp), ALLOCATABLE :: AA(:,:,:)
REAL(dp), ALLOCATABLE :: At(:,:,:), B_inv(:,:,:)
REAL(dp), ALLOCATABLE :: Ptot(:,:,:)
ALLOCATE( At( nx, nyt, nz ) ) ! nyt ~ ny/nproc
allocate(zy(ny))
allocate(zx(nx))
allocate(zz(nz))
allocate(AA( nxl, ny, nz ))
allocate(Ptot( nxl, ny, nz ))
allocate(B_inv(nxl, ny, nz))
Ptot = Bx**2 + By**2 + Bz**2
B_inv = 1.0d0 / Ptot
!*************************************************************!
! Calcolo del primo termine MOTO_z da derivare rispetto a x !
!*************************************************************!
AA = Bx * Bz * ( 1.0d0 - B_inv * ( pe_para + pi_para - pe_perp - pi_perp ) ) &
- Den * (Uix * Uiz + de2 * Uex * Uez) - Gi_xz ! = Axz
CALL traspdist( AA, At, 1 )
do iz = 1, nz
do iy = 1, nyt
call derx_1( At(:,iy,iz), zx )
At(:,iy,iz) = zx
enddo
enddo
CALL traspdist( RHS_x, At, -1 )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! eventuali correz. su divB nel bulk
! CALL traspdist( Bx, At, 1 )
!do iz = 1, nz
! do iy = 1, nyt
! call derx_1( At(:,iy,iz), zx )
! At(:,iy,iz) = zx
! enddo
!enddo
! CALL traspdist( AA, At, -1 )
!do iz = 1, nz
! do ix = 1, nxl
! call dery_1(By(ix,:,iz), zy)
! AA(ix,:,iz) = AA(ix,:,iz) + zy
! enddo
!enddo
!RHS_x = RHS_x - Bz * AA
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! N.B per ora tralascio ogni termime de2....corretto solo MHD
! N.B. in questo caso ho messo, nei punti 1,nx U e non Ui/Ue
IF (ibc .EQ. 4) then
if ( mpime == 0 ) then
RHS_x(1,:,:) = 0.5 * Den(1,:,:) * ( Uz(1,:,:) * (2. * L_0(1,:,:) *c_s_inv(1,:,:) + &
alpha_2(1,:,:) * c_s_inv(1,:,:) *&
(L_s_p(1,:,:) + L_s_m(1,:,:)) - alpha_1(1,:,:) * f_inv(1,:,:) *&
(L_f_p(1,:,:) + L_f_m(1,:,:))) &
+ a_inv(1,:,:) * ( - ay(1,:,:) * (L_a_p(1,:,:) + L_a_m(1,:,:)) + az(1,:,:) * &
(segno(1,:,:) * alpha_1(1,:,:)* (L_s_p(1,:,:) - L_s_m(1,:,:)) &
+ ax(1,:,:) * alpha_2(1,:,:) * f_inv(1,:,:) * (L_f_p(1,:,:) - L_f_m(1,:,:)))))
!call derx_BC(Bz,grad)
!RHS_x(1,:,:) = Bx(1,:,:) * grad(1,:,:)
do iz = 1, nz
call dery_1(By(1,:,iz),zy)
RHS_x(1,:,iz) = RHS_x(1,:,iz) - Bz(1,:,iz) * zy
enddo
endif
if ( mpime == nprow -1 ) then
RHS_x(nxl,:,:) = 0.5 * Den(nxl,:,:) * ( Uz(nxl,:,:) * (2. * L_0(2,:,:) *c_s_inv(2,:,:) + &
alpha_2(2,:,:) * c_s_inv(2,:,:) *&
(L_s_p(2,:,:) + L_s_m(2,:,:)) - alpha_1(2,:,:) * f_inv(2,:,:) *&
(L_f_p(2,:,:) + L_f_m(2,:,:))) &
+ a_inv(2,:,:) * ( - ay(2,:,:) * (L_a_p(2,:,:) + L_a_m(2,:,:)) + az(2,:,:) * &
(segno(2,:,:) * alpha_1(2,:,:)* (L_s_p(2,:,:) - L_s_m(2,:,:)) &
+ ax(2,:,:) * alpha_2(2,:,:) * f_inv(2,:,:) * (L_f_p(2,:,:) - L_f_m(2,:,:)))))
!call derx_BC(Bz,grad)
!RHS_x(nxl,:,:) = Bx(nxl,:,:) * grad(nxl,:,:)
do iz = 1, nz
call dery_1(By(nxl,:,iz),zy)
RHS_x(nxl,:,iz) = RHS_x(nxl,:,iz) - Bz(nxl,:,iz) * zy
enddo
endif
ENDIF
!*************************************************************!
! Calcolo del secondo termine MOTO_z da derivare rispetto a y !
!*************************************************************!
AA = By * Bz * ( 1.0d0 - B_inv * (pe_para + pi_para - pe_perp - pi_perp ) ) &
- Den * (Uiy * Uiz + de2 * Uey * Uez) - Gi_yz ! = Ayz
do iz = 1, nz
do ix = 1, nxl
call dery_1(AA(ix,:,iz), zy)
RHS_x(ix,:,iz) = RHS_x(ix,:,iz) + zy
enddo
enddo
!*************************************************************!
! Calcolo del terzo termine MOTO_z da derivare rispetto a z !
! !
! Ptot = pe_perp + pi_perp + B^2 / 2 !
! !
! PAI_zz = 0 per ipotesi (c.magnetico principale lungo z) !
! (vedi commenti in flr_i.f90 per maggiori dettagli) !
!*************************************************************!
RHS_x = RHS_x * de12inv
deallocate(zx)
deallocate(zy)
deallocate(zz)
deallocate(AA)
deallocate(At)
deallocate(Ptot)
deallocate(B_inv)
end subroutine