-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoto_xy.f90
executable file
·295 lines (225 loc) · 8.59 KB
/
moto_xy.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
subroutine moto_xy(RHS_x, RHS_y)
!--------------------------------------------------------------!
! F. Califano, 2006 !
! !
! Eq. MOTO componente x: !
! !
! Div[ BB - n(UU + de^2 jj) - P_tot * Ident ] !
! !
! Axx = - Den * (Uix * Uix + de2 * Uex * Uex) + Bx Bx - P_tot !
! Ayy = - Den * (Uiy * Uiy + de2 * Uey * Uey) + Bx By - P_tot !
! Axy = - Den * (Uix * Uiy + de2 * Uex * Uey) + Bx By ! = Ayx !
! Axz = - Den * (Uix * Uiz + de2 * Uex * Uez) + Bz Bz !
! Ayz = - Den * (Uiy * Uiz + de2 * Uey * Uez) + By Bz !
!--------------------------------------------------------------!
!**************************************************
! MPI PARALLEL VERSION: VALENTINI-FAGANELLO 2009
! 3D PARALLEL VERSION: FAGANELLO 2010
! LANDAU-FLUID VERSION FAGANELLO 2011
!
! FLR-Landau-Fluid VERSION: Cerri 2011
!
!**************************************************
use parameter_mod
use box_mod
use deriv_mod
use fields_UJ_mod
use fields_DP_mod
use fields_EB_mod
use dom_distr_mod
use parallel_mod
IMPLICIT NONE
integer :: ix, iy, iz
REAL(dp),DIMENSION (nxl,nyl,nzl) :: RHS_x, RHS_y
REAL(dp),ALLOCATABLE :: zx(:)
REAL(dp),ALLOCATABLE :: zy(:)
REAL(dp),ALLOCATABLE :: zz(:)
REAL(dp),ALLOCATABLE :: AA(:,:,:)
REAL(dp),ALLOCATABLE :: Ptot(:,:,:), B_inv(:,:,:)
REAL(dp), ALLOCATABLE :: At(:,:,:)
ALLOCATE( At( nx, nyt, nz ) ) ! nyt ~ ny/nproc
allocate(zx(nx))
allocate(zy(ny))
allocate(zz(nz))
allocate(AA(nxl, ny, nz))
allocate(Ptot(nxl, ny, nz))
allocate(B_inv(nxl, ny, nz))
! Ptot = P_e + p_perp + B^2 / 2
Ptot = Bx**2 + By**2 + Bz**2
B_inv = 1.0d0 / Ptot
Ptot = 0.5 * Ptot + pe_perp + pi_perp
!************************************************************!
! Calcolo del primo termine MOTO_x da derivare rispetto a x !
!************************************************************!
AA = Bx * Bx * ( 1.0d0 - B_inv * ( pe_para + pi_para - pe_perp - pi_perp ) ) &
- Ptot - Den * (Uix * Uix + de2 * Uex * Uex) - Gi_xx
CALL traspdist( AA, At, 1 )
do iz = 1, nz
do iy = 1, nyt
call derx_1( At(:,iy,iz), zx )
At(:,iy,iz) = zx
enddo
enddo
CALL traspdist( RHS_x, At, -1 )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! eventuali correz. su divB nel bulk
! CALL traspdist( Bx, At, 1 )
!do iz = 1, nz
! do iy = 1, nyt
! call derx_1( At(:,iy,iz), zx )
! At(:,iy,iz) = zx
! enddo
!enddo
! CALL traspdist( AA, At, -1 )
!do iz = 1, nz
! do ix = 1, nxl
! call dery_1(By(ix,:,iz), zy)
! AA(ix,:,iz) = AA(ix,:,iz) + zy
! enddo
!enddo
!RHS_x = RHS_x - Bx * AA
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! N.B per ora tralascio ogni termime de2....corretto solo MHD
! N.B. in questo caso ho messo, nei punti 1,nx U e non Ui/Ue
IF (ibc .EQ. 4) then
if ( mpime == 0 ) then
RHS_x(1,:,:) = 0.5d0 * Den(1,:,:) * (Ux(1,:,:)* (2.0d0 * L_0(1,:,:) *c_s_inv(1,:,:) + &
alpha_2(1,:,:) * c_s_inv(1,:,:) * &
(L_s_p(1,:,:) + L_s_m(1,:,:)) - alpha_1(1,:,:) * f_inv(1,:,:) *&
(L_f_p(1,:,:) + L_f_m(1,:,:))) &
+ s(1,:,:) * alpha_2(1,:,:) * c_s_inv(1,:,:) * (L_s_p(1,:,:) - L_s_m(1,:,:)) &
- alpha_1(1,:,:) * (L_f_p(1,:,:) - L_f_m(1,:,:)) )
!call derx_BC(By,grad)
!RHS_x(1,:,:) = - By(1,:,:) * grad(1,:,:)
do iz = 1, nz
call dery_1(By(1,:,iz),zy)
RHS_x(1,:,iz) = RHS_x(1,:,iz) - Bx(1,:,iz) * zy
enddo
endif
if ( mpime == nprow -1 ) then
RHS_x(nxl,:,:) = 0.5 * Den(nxl,:,:) * (Ux(nxl,:,:)* ( 2. * L_0(2,:,:) *c_s_inv(2,:,:) + &
alpha_2(2,:,:) * c_s_inv(2,:,:) * &
(L_s_p(2,:,:) + L_s_m(2,:,:)) - alpha_1(2,:,:) * f_inv(2,:,:) *&
(L_f_p(2,:,:) + L_f_m(2,:,:))) &
+ s(2,:,:) * alpha_2(2,:,:) * c_s_inv(2,:,:) * (L_s_p(2,:,:) - L_s_m(2,:,:)) &
- alpha_1(2,:,:) * (L_f_p(2,:,:) - L_f_m(2,:,:)) )
!call derx_BC(By,grad)
!RHS_x(nxl,:,:) = - By(nxl,:,:) * grad(nxl,:,:)
!IF (nz.GT.1) THEN
!call derx_BC(Bz,grad)
!RHS_x(nxl,:,:) = - Bz(nxl,:,:) * grad(nxl,:,:)
!ENDIF
do iz = 1, nz
call dery_1(By(nxl,:,iz),zy)
RHS_x(nxl,:,iz) = RHS_x(nxl,:,iz) - Bx(nxl,:,iz) * zy
enddo
endif
ENDIF
!*************************************************************!
! Calcolo del primo termine MOTO_y da derivare rispetto a x !
!*************************************************************!
AA = Bx * By * ( 1.0d0 - B_inv * ( pe_para + pi_para - pe_perp + pi_perp ) ) &
- Den * (Uix * Uiy + de2 * Uex * Uey) - Gi_xy
CALL traspdist( AA, At, 1 )
do iz = 1, nz
do iy = 1, nyt
call derx_1( At(:,iy,iz), zx )
At(:,iy,iz) = zx
enddo
enddo
CALL traspdist( RHS_y, At, -1 )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! eventuali correz. su divB nel bulk
! CALL traspdist( Bx, At, 1 )
!do iz = 1, nz
! do iy = 1, nyt
! call derx_1( At(:,iy,iz), zx )
! At(:,iy,iz) = zx
! enddo
!enddo
! CALL traspdist( AB, At, -1 )
!do iz = 1, nz
! do ix = 1, nxl
! call dery_1(By(ix,:,iz), zy)
! AB(ix,:,iz) = AB(ix,:,iz) + zy
! enddo
!enddo
!RHS_y = RHS_y - By * AB
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
IF (ibc .EQ. 4) then
if ( mpime == 0 ) then
RHS_y(1,:,:) = 0.5 * Den(1,:,:) * (Uy(1,:,:)* ( 2. * L_0(1,:,:) *c_s_inv(1,:,:) + &
alpha_2(1,:,:) * c_s_inv(1,:,:) * &
(L_s_p(1,:,:) + L_s_m(1,:,:)) - alpha_1(1,:,:) * f_inv(1,:,:) * &
(L_f_p(1,:,:) + L_f_m(1,:,:))) &
+ a_inv(1,:,:) * (az(1,:,:) * (L_a_p(1,:,:) + L_a_m(1,:,:)) + ay(1,:,:) * &
(segno(1,:,:) * alpha_1(1,:,:) * (L_s_p(1,:,:) - L_s_m(1,:,:)) &
+ ax(1,:,:) * alpha_2(1,:,:) * f_inv(1,:,:) * (L_f_p(1,:,:) - L_f_m(1,:,:)))))
!call derx_BC(By,grad)
!RHS_y(1,:,:) = Bx(1,:,:) * grad(1,:,:)
do iz = 1, nz
call dery_1(By(1,:,iz),zy)
RHS_y(1,:,iz) = RHS_y(1,:,iz) - By(1,:,iz) * zy
enddo
endif
if ( mpime == nprow -1 ) then
RHS_y(nxl,:,:) = 0.5 * Den(nxl,:,:) * (Uy(nxl,:,:)* (2.* L_0(2,:,:) *c_s_inv(2,:,:) + &
alpha_2(2,:,:) * c_s_inv(2,:,:) * &
(L_s_p(2,:,:) + L_s_m(2,:,:)) - alpha_1(2,:,:) * f_inv(2,:,:) * &
(L_f_p(2,:,:) + L_f_m(2,:,:))) &
+ a_inv(2,:,:) * (az(2,:,:) * (L_a_p(2,:,:) + L_a_m(2,:,:)) + ay(2,:,:) * &
(segno(2,:,:) * alpha_1(2,:,:) * (L_s_p(2,:,:) - L_s_m(2,:,:)) &
+ ax(2,:,:) * alpha_2(2,:,:) * f_inv(2,:,:) * (L_f_p(2,:,:) - L_f_m(2,:,:)))))
!call derx_BC(By,grad)
!RHS_y(nxl,:,:) = Bx(nxl,:,:) * grad(nxl,:,:)
do iz = 1, nz
call dery_1(By(nxl,:,iz),zy)
RHS_y(nxl,:,iz) = RHS_y(nxl,:,iz) - By(nxl,:,iz) * zy
enddo
endif
ENDIF
!**************************************************************!
! Calcolo del secondo termine MOTO_x da derivare rispetto a y !
! !
! Qui riutilizzo A_xy = A_yx calcolato prima !
! !
! Ricorda che Gi_yx = Gi_xy !
! (vedi commenti in flr_i.f90 per maggiori dettagli) !
!**************************************************************!
do iz = 1, nz
do ix = 1, nxl
call dery_1(AA(ix,:,iz), zy)
RHS_x(ix,:,iz) = RHS_x(ix,:,iz) + zy
enddo
enddo
!*************************************************************!
! Calcolo del secondo termine MOTO_y da derivare rispetto a y !
! !
! Ricorda che Gi_yy = -Gi_xx !
! (vedi commenti in flr_i.f90 per maggiori dettagli) !
!*************************************************************!
AA = By * By * ( 1.0d0 - B_inv * ( pe_para + pi_para - pe_perp - pi_perp ) ) &
- Ptot - Den * (Uiy * Uiy + de2 * Uey * Uey) + Gi_xx
do iz = 1, nz
do ix = 1, nxl
call dery_1(AA(ix,:,iz), zy)
RHS_y(ix,:,iz) = RHS_y(ix,:,iz) + zy
enddo
enddo
!***********************************************************!
! Calcolo del terzo termine MOTO_x da derivare rispetto a z !
! !
! Ricorda che Gi_zx = Gi_xz !
! (vedi commenti in flr_i.f90 per maggiori dettagli) !
!***********************************************************!
RHS_x = RHS_x * de12inv
RHS_y = RHS_y * de12inv
! Iperviscosita' su n * Ux............eventualmente aggiornare per versione parallela 2D/3D
deallocate(zx)
deallocate(zy)
deallocate(zz)
deallocate(AA)
deallocate(Ptot)
deallocate(At)
deallocate(B_inv)
end subroutine