forked from angus924/rocket
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reproduce_experiments_scalability.py
304 lines (216 loc) · 12.4 KB
/
reproduce_experiments_scalability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Angus Dempster, Francois Petitjean, Geoff Webb
# Dempster A, Petitjean F, Webb GI (2019) ROCKET: Exceptionally fast and
# accurate time series classification using random convolutional kernels.
# arXiv:1910.13051
import argparse
import numpy as np
import pandas as pd
import time
import torch, torch.nn as nn, torch.optim as optim
from rocket_functions import apply_kernels, generate_kernels
# == notes =====================================================================
# - This script is intended to:
# (a) allow for reproduction of the scalability experiments using the
# Satellite Image Time Series dataset; and
# (b) serve as a template for integrating ROCKET with logistic / softmax
# regression and stochastic gradient descent (or, e.g., Adam) for other
# large datasets using PyTorch.
# - The required arguments for this script are:
# - -tr or --training_path, the training dataset (csv);
# - -te or --test_path, the test dataset (csv);
# - -o or --output_path, to save "results_scalability_num_examples_k={k}.csv";
# - -k or --num_kernels, the number of kernels.
# - As the kernels are "fixed", there is no point performing the transform more
# than once. For this reason, the *train(...)* function caches the
# transformed features for up to *cache_size* training examples. This avoids
# needlessly repeating the transform for multiple epochs of training. Broadly
# speaking, the cache size should be as large as possible (subject to
# available RAM; if RAM is limited, consider caching the transformed features
# on disk). For large datasets, multiple passes may not be necessary.
# - It may be necessary to adapt the code to your dataset in terms of dataset
# size and structure, patience, other regularisation, etc.
# == parse arguments ===========================================================
parser = argparse.ArgumentParser()
parser.add_argument("-tr", "--training_path", required = True)
parser.add_argument("-te", "--test_path", required = True)
parser.add_argument("-o", "--output_path", required = True)
parser.add_argument("-k", "--num_kernels", type = int)
arguments = parser.parse_args()
# == training function =========================================================
def train(X,
Y,
X_validation,
Y_validation,
kernels,
num_features,
num_classes,
minibatch_size = 256,
max_epochs = 100,
patience = 2, # * 10 minibatches; 2 -> 2 * 10 = 20 minibatches; reset if loss improves
tranche_size = 2 ** 11,
cache_size = 2 ** 14): # as much as possible
# -- init ------------------------------------------------------------------
def init(layer):
if isinstance(layer, nn.Linear):
nn.init.constant_(layer.weight.data, 0)
nn.init.constant_(layer.bias.data, 0)
# -- model -----------------------------------------------------------------
model = nn.Sequential(nn.Linear(num_features, num_classes)) # logistic / softmax regression
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor = 0.5, min_lr = 1e-8)
model.apply(init)
# -- run -------------------------------------------------------------------
minibatch_count = 0
best_validation_loss = np.inf
stall_count = 0
stop = False
num_examples = len(X)
num_tranches = np.int(np.ceil(num_examples / tranche_size))
cache = np.zeros((min(cache_size, num_examples), num_features))
cache_count = 0
for epoch in range(max_epochs):
if epoch > 0 and stop:
break
for tranche_index in range(num_tranches):
if epoch > 0 and stop:
break
a = tranche_size * tranche_index
b = a + tranche_size
Y_tranche = Y[a:b]
# if cached, use cached transform; else transform and cache the result
if b <= cache_count:
X_tranche_transform = cache[a:b]
else:
X_tranche = X[a:b]
X_tranche = (X_tranche - X_tranche.mean(axis = 1, keepdims = True)) / X_tranche.std(axis = 1, keepdims = True) # normalise time series
X_tranche_transform = apply_kernels(X_tranche, kernels)
if epoch == 0 and tranche_index == 0:
# per-feature mean and standard deviation (estimated on first tranche)
f_mean = X_tranche_transform.mean(0)
f_std = X_tranche_transform.std(0) + 1e-8
# normalise and transform validation data
X_validation = (X_validation - X_validation.mean(axis = 1, keepdims = True)) / X_validation.std(axis = 1, keepdims = True) # normalise time series
X_validation_transform = apply_kernels(X_validation, kernels)
X_validation_transform = (X_validation_transform - f_mean) / f_std # normalise transformed features
X_validation_transform = torch.FloatTensor(X_validation_transform)
Y_validation = torch.LongTensor(Y_validation)
X_tranche_transform = (X_tranche_transform - f_mean) / f_std # normalise transformed features
if b <= cache_size:
cache[a:b] = X_tranche_transform
cache_count = b
X_tranche_transform = torch.FloatTensor(X_tranche_transform)
Y_tranche = torch.LongTensor(Y_tranche)
minibatches = torch.randperm(len(X_tranche_transform)).split(minibatch_size)
for minibatch_index, minibatch in enumerate(minibatches):
if epoch > 0 and stop:
break
# abandon undersized minibatches
if minibatch_index > 0 and len(minibatch) < minibatch_size:
break
# -- (optional) minimal lr search ------------------------------
# default lr for Adam may cause training loss to diverge for
# large numbers of kernels (i.e., large numbers of features /
# model parameters); lr which minimises training loss on first
# update should be sufficient to ensure convergent training loss
if epoch == 0 and tranche_index == 0 and minibatch_index == 0:
candidate_lr = 10 ** np.linspace(-1, -6, 6)
best_lr = None
best_training_loss = np.inf
for lr in candidate_lr:
lr_model = nn.Sequential(nn.Linear(num_features, num_classes))
lr_optimizer = optim.Adam(lr_model.parameters())
lr_model.apply(init)
for param_group in lr_optimizer.param_groups:
param_group["lr"] = lr
# perform a single update
lr_optimizer.zero_grad()
Y_tranche_predictions = lr_model(X_tranche_transform[minibatch])
training_loss = loss_function(Y_tranche_predictions, Y_tranche[minibatch])
training_loss.backward()
lr_optimizer.step()
Y_tranche_predictions = lr_model(X_tranche_transform)
training_loss = loss_function(Y_tranche_predictions, Y_tranche).item()
if training_loss < best_training_loss:
best_training_loss = training_loss
best_lr = lr
for param_group in optimizer.param_groups:
param_group["lr"] = best_lr
# -- training --------------------------------------------------
optimizer.zero_grad()
Y_tranche_predictions = model(X_tranche_transform[minibatch])
training_loss = loss_function(Y_tranche_predictions, Y_tranche[minibatch])
training_loss.backward()
optimizer.step()
minibatch_count += 1
if minibatch_count % 10 == 0:
Y_validation_predictions = model(X_validation_transform)
validation_loss = loss_function(Y_validation_predictions, Y_validation)
scheduler.step(validation_loss)
if validation_loss.item() >= best_validation_loss:
stall_count += 1
if stall_count >= patience:
stop = True
else:
best_validation_loss = validation_loss.item()
if not stop:
stall_count = 0
return model, f_mean, f_std
# == run =======================================================================
# -- precompile ROCKET functions -----------------------------------------------
print("Compiling ROCKET functions (once only)".ljust(80 - 5, "."), end = "", flush = True)
training_data = pd.read_csv(arguments.training_path, header = None, nrows = 10).values
_ = generate_kernels(20, 10)
apply_kernels(np.zeros_like(training_data)[:, 1:], _)
print("Done.")
# -- run through dataset sizes -------------------------------------------------
all_num_training_examples = 2 ** np.arange(8, 20 + 1)
results = pd.DataFrame(index = all_num_training_examples,
columns = ["accuracy", "time_training_seconds"],
data = 0)
results.index.name = "num_training_examples"
print(f" {arguments.num_kernels:,} Kernels ".center(80, "="))
for num_training_examples in all_num_training_examples:
if num_training_examples == all_num_training_examples[0]:
print("Number of training examples:" + f"{num_training_examples:,}".rjust(75 - 28 - 5, " ") + ".....", end = "", flush = True)
else:
print(f"{num_training_examples:,}".rjust(75 - 5, " ") + ".....", end = "", flush = True)
# -- read training and validation data -------------------------------------
# if training data does not fit in memory, you can instead load the training
# data inside the train(...) function, using the *chunksize* argument for
# pandas.read_csv(...) (and roughly substituting chunks for tranches);
# similarly, if the cache does not fit in memory, consider caching the
# transformed features on disk
# here, validation data is always the first 2 ** 11 = 2,048 examples
validation_data = pd.read_csv(arguments.training_path, header = None, nrows = 2 ** 11).values
Y_validation, X_validation = validation_data[:, 0], validation_data[:, 1:]
training_data = pd.read_csv(arguments.training_path, header = None, skiprows = 2 ** 11, nrows = num_training_examples).values
Y_training, X_training = training_data[:, 0], training_data[:, 1:]
# -- generate kernels ------------------------------------------------------
kernels = generate_kernels(X_training.shape[1], arguments.num_kernels)
# -- train -----------------------------------------------------------------
time_a = time.perf_counter()
model, f_mean, f_std = train(X_training,
Y_training,
X_validation,
Y_validation,
kernels,
arguments.num_kernels * 2,
num_classes = 24)
time_b = time.perf_counter()
results.loc[num_training_examples, "time_training_seconds"] = time_b - time_a
# -- test ------------------------------------------------------------------
# read test data (here, we test on a subset of the full test data)
test_data = pd.read_csv(arguments.test_path, header = None, nrows = 2 ** 11).values
Y_test, X_test = test_data[:, 0].astype(np.int), test_data[:, 1:]
# normalise and transform test data
X_test = (X_test - X_test.mean(axis = 1, keepdims = True)) / X_test.std(axis = 1, keepdims = True) # normalise time series
X_test_transform = apply_kernels(X_test, kernels)
X_test_transform = (X_test_transform - f_mean) / f_std # normalise transformed features
# predict
model.eval()
Y_test_predictions = model(torch.FloatTensor(X_test_transform))
results.loc[num_training_examples, "accuracy"] = (Y_test_predictions.max(1)[1].numpy() == Y_test).mean()
print("Done.")
print(f" FINISHED ".center(80, "="))
results.to_csv(f"{arguments.output_path}/results_scalability_num_examples_k={arguments.num_kernels}.csv")