-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathqjmul.m
62 lines (60 loc) · 2.37 KB
/
qjmul.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function z = qjmul(x,y,K)
% z = qjmul(x,y,K)
%
% QJMUL Implements Jordan product for Lorentz cones
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
if isempty(K.q)
z = zeros(0,1);
else
% ------------------------------------------------------------
% Let i1, i2 such that x(i1:i2-1) = "x1", i.e. Lorentz trace part.
% ------------------------------------------------------------
if length(x) ~= length(y)
error('x,y size mismatch');
end
ix = K.mainblks;
if length(x) < K.lq % Only q-part given?
ix = (1-ix(1)) + ix;
if length(x) ~= length(y)
error('x, y size mismatch')
end
end
% ------------------------------------------------------------
% Let z1 = x'*y/sqrt2, z2 = (x1*y2+y1*x2)/sqrt2
% ------------------------------------------------------------
z1 = x(ix(1):ix(2)-1).*y(ix(1):ix(2)-1)...
+ ddot(x(ix(2):ix(3)-1),y,K.qblkstart);
z = [z1; qblkmul(x(ix(1):ix(2)-1),y,K.qblkstart)...
+ qblkmul(y(ix(1):ix(2)-1),x,K.qblkstart)] / sqrt(2);
end