-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
200 lines (175 loc) · 7.41 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import numpy as np
import argparse
import imageio
import torch
from einops import rearrange
from diffusers import DDIMScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer
#import controlnet_aux
import torchvision
from controlnet_aux.processor import Processor
from models.pipeline_controlvideo import ControlVideoPipeline
from models.util import save_videos_grid, read_video, get_annotation
from models.unet import UNet3DConditionModel
from models.controlnet import ControlNetModel3D
from models.RIFE.IFNet_HDv3 import IFNet
from cog import BasePredictor, Input, Path
sd_path = "checkpoints/stable-diffusion-v1-5"
inter_path = "checkpoints/flownet.pkl"
controlnet_dict_version = {
"v10":{
"openpose": "checkpoints/sd-controlnet-openpose",
"depth_midas": "checkpoints/sd-controlnet-depth",
"canny": "checkpoints/sd-controlnet-canny",
},
"v11": {
"softedge_pidinet": "checkpoints/control_v11p_sd15_softedge",
"softedge_pidsafe": "checkpoints/control_v11p_sd15_softedge",
"softedge_hed": "checkpoints/control_v11p_sd15_softedge",
"softedge_hedsafe": "checkpoints/control_v11p_sd15_softedge",
"scribble_hed": "checkpoints/control_v11p_sd15_scribble",
"scribble_pidinet": "checkpoints/control_v11p_sd15_scribble",
"lineart_anime": "checkpoints/control_v11p_sd15_lineart_anime",
"lineart_coarse": "checkpoints/control_v11p_sd15_lineart",
"lineart_realistic": "checkpoints/control_v11p_sd15_lineart",
"depth_midas": "checkpoints/control_v11f1p_sd15_depth",
"depth_leres": "checkpoints/control_v11f1p_sd15_depth",
"depth_leres++": "checkpoints/control_v11f1p_sd15_depth",
"depth_zoe": "checkpoints/control_v11f1p_sd15_depth",
"canny": "checkpoints/control_v11p_sd15_canny",
"openpose": "checkpoints/control_v11p_sd15_openpose",
"openpose_face": "checkpoints/control_v11p_sd15_openpose",
"openpose_faceonly": "checkpoints/control_v11p_sd15_openpose",
"openpose_full": "checkpoints/control_v11p_sd15_openpose",
"openpose_hand": "checkpoints/control_v11p_sd15_openpose",
"normal_bae": "checkpoints/control_v11p_sd15_normalbae"
}
}
controlnet_dict = {
"pose": "checkpoints/sd-controlnet-openpose",
"depth": "checkpoints/sd-controlnet-depth",
"canny": "checkpoints/sd-controlnet-canny",
}
controlnet_parser_dict = {
"pose": OpenposeDetector,
"depth": MidasDetector,
"canny": CannyDetector,
}
POS_PROMPT = " ,best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth"
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic"
class Predictor(BasePredictor):
def setup(self, condition):
"""Load the model into memory to make running multiple predictions efficient"""
self.tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(
sd_path, subfolder="text_encoder"
).to(dtype=torch.float16)
self.vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(
dtype=torch.float16
)
self.unet = UNet3DConditionModel.from_pretrained_2d(
sd_path, subfolder="unet"
).to(dtype=torch.float16)
self.interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
self.scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
#self.controlnet = ''
self.controlnet = Processor(condition)
self.annotator = {k: controlnet_parser_dict[k]() for k in ["depth", "canny"]}
self.annotator["pose"] = controlnet_parser_dict["pose"].from_pretrained(
"lllyasviel/ControlNet", cache_dir="checkpoints"
)
def predict(
self,
prompt: str = Input(
description="Text description of target video",
default="A striking mallard floats effortlessly on the sparkling pond.",
),
video_path: Path = Input(description="source video"),
condition: str = Input(
default="depth",
choices=["depth", "canny", "pose"],
description="Condition of structure sequence",
),
version: str = Input(
default="v10",
description="Controlnet Version",
),
video_length: int = Input(
default=15, description="Length of synthesized video"
),
smoother_steps: str = Input(
default="19, 20",
description="Timesteps at which using interleaved-frame smoother, separate with comma",
),
is_long_video: bool = Input(
default=False,
description="Whether to use hierarchical sampler to produce long video",
),
num_inference_steps: int = Input(
description="Number of denoising steps", default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=12.5
),
seed: str = Input(
default=None, description="Random seed. Leave blank to randomize the seed"
),
) -> Path:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
else:
seed = int(seed)
print(f"Using seed: {seed}")
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
pipe = ControlVideoPipeline(
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet=self.unet,
controlnet=self.controlnet,
interpolater=self.interpolater,
scheduler=self.scheduler,
)
pipe.enable_vae_slicing()
pipe.enable_xformers_memory_efficient_attention()
pipe.to("cuda")
# Step 1. Read a video
video = read_video(video_path=str(video_path), video_length=video_length)
# Step 2. Parse a video to conditional frames
pil_annotation = get_annotation(video, self.annotator[condition])
# Step 3. inference
smoother_steps = [int(s) for s in smoother_steps.split(",")]
if is_long_video:
window_size = int(np.sqrt(video_length))
sample = pipe.generate_long_video(
prompt + POS_PROMPT,
video_length=video_length,
frames=pil_annotation,
num_inference_steps=num_inference_steps,
smooth_steps=smoother_steps,
window_size=window_size,
generator=generator,
guidance_scale=guidance_scale,
negative_prompt=NEG_PROMPT,
).videos
else:
sample = pipe(
prompt + POS_PROMPT,
video_length=video_length,
frames=pil_annotation,
num_inference_steps=num_inference_steps,
smooth_steps=smoother_steps,
generator=generator,
guidance_scale=guidance_scale,
negative_prompt=NEG_PROMPT,
).videos
out_path = "/tmp/out.mp4"
save_videos_grid(sample, out_path)
del pipe
torch.cuda.empty_cache()
return Path(out_path)