-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathonnx_inference_image.py
224 lines (205 loc) · 6.79 KB
/
onnx_inference_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""
Script to run inference on images using ONNX models.
`--input` can take the path either an image or a directory containing images.
USAGE:
python onnx_inference_image.py --input ../inference_data/ --weights weights/fasterrcnn_resnet18.onnx --data data_configs/voc.yaml --show --imgsz 640
"""
import torch
import onnxruntime
import cv2
import numpy as np
import os
import glob
import argparse
import yaml
import time
import matplotlib.pyplot as plt
from utils.transforms import infer_transforms, resize
from utils.general import set_infer_dir
from utils.annotations import (
inference_annotations, convert_detections
)
from utils.logging import LogJSON
def collect_all_images(dir_test):
"""
Function to return a list of image paths.
:param dir_test: Directory containing images or single image path.
Returns:
test_images: List containing all image paths.
"""
test_images = []
if os.path.isdir(dir_test):
image_file_types = ['*.jpg', '*.jpeg', '*.png', '*.ppm']
for file_type in image_file_types:
test_images.extend(glob.glob(f"{dir_test}/{file_type}"))
else:
test_images.append(dir_test)
return test_images
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def parse_opt():
# Construct the argument parser.
parser = argparse.ArgumentParser()
parser.add_argument(
'-i', '--input',
help='folder path to input input image (one image or a folder path)',
)
parser.add_argument(
'--data',
default=None,
help='path to the data config file'
)
parser.add_argument(
'-w', '--weights',
default=None,
help='path to trained checkpoint weights if providing custom YAML file'
)
parser.add_argument(
'-th', '--threshold',
default=0.3,
type=float,
help='detection threshold'
)
parser.add_argument(
'-si', '--show',
action='store_true',
help='visualize output only if this argument is passed'
)
parser.add_argument(
'-mpl', '--mpl-show',
dest='mpl_show',
action='store_true',
help='visualize using matplotlib, helpful in notebooks'
)
parser.add_argument(
'-ims', '--imgsz',
default=640,
type=int,
help='resize image to, by default use the original frame/image size'
)
parser.add_argument(
'-nlb', '--no-labels',
dest='no_labels',
action='store_true',
help='do not show labels during on top of bounding boxes'
)
parser.add_argument(
'--classes',
nargs='+',
type=int,
default=None,
help='filter classes by visualization, --classes 1 2 3'
)
parser.add_argument(
'--track',
action='store_true'
)
parser.add_argument(
'--log-json',
dest='log_json',
action='store_true',
help='store a json log file in COCO format in the output directory'
)
args = vars(parser.parse_args())
return args
def main(args):
np.random.seed(42)
# Load model.
ort_session = onnxruntime.InferenceSession(
args['weights'], providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
with open(args['data']) as file:
data_configs = yaml.safe_load(file)
NUM_CLASSES = data_configs['NC']
CLASSES = data_configs['CLASSES']
OUT_DIR = set_infer_dir()
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
if args['input'] == None:
DIR_TEST = data_configs['image_path']
test_images = collect_all_images(DIR_TEST)
else:
DIR_TEST = args['input']
test_images = collect_all_images(DIR_TEST)
print(f"Test instances: {len(test_images)}")
# Define the detection threshold any detection having
# score below this will be discarded.
detection_threshold = args['threshold']
if args['log_json']:
log_json = LogJSON(os.path.join(OUT_DIR, 'log.json'))
# To count the total number of frames iterated through.
frame_count = 0
# To keep adding the frames' FPS.
total_fps = 0
for i in range(len(test_images)):
# Get the image file name for saving output later on.
image_name = test_images[i].split(os.path.sep)[-1].split('.')[0]
orig_image = cv2.imread(test_images[i])
frame_height, frame_width, _ = orig_image.shape
if args['imgsz'] != None:
RESIZE_TO = args['imgsz']
else:
RESIZE_TO = frame_width
# orig_image = image.copy()
image_resized = resize(orig_image, RESIZE_TO, square=True)
image = image_resized.copy()
# BGR to RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = infer_transforms(image)
# Add batch dimension.
image = torch.unsqueeze(image, 0)
print(image.shape)
start_time = time.time()
preds = ort_session.run(
None, {ort_session.get_inputs()[0].name: to_numpy(image)}
)
end_time = time.time()
# Get the current fps.
fps = 1 / (end_time - start_time)
# Add `fps` to `total_fps`.
total_fps += fps
# Increment frame count.
frame_count += 1
outputs = {}
outputs['boxes'] = torch.tensor(preds[0])
outputs['labels'] = torch.tensor(preds[1])
outputs['scores'] = torch.tensor(preds[2])
outputs = [outputs]
# Log to JSON?
if args['log_json']:
log_json.update(orig_image, image_name, outputs[0], CLASSES)
# Carry further only if there are detected boxes.
if len(outputs[0]['boxes']) != 0:
draw_boxes, pred_classes, scores = convert_detections(
outputs, detection_threshold, CLASSES, args
)
orig_image = inference_annotations(
draw_boxes,
pred_classes,
scores,
CLASSES,
COLORS,
orig_image,
image_resized,
args
)
if args['show']:
cv2.imshow('Prediction', orig_image)
cv2.waitKey(1)
if args['mpl_show']:
plt.imshow(orig_image[:, :, ::-1])
plt.axis('off')
plt.show()
cv2.imwrite(f"{OUT_DIR}/{image_name}.jpg", orig_image)
print(f"Image {i+1} done...")
print('-'*50)
print('TEST PREDICTIONS COMPLETE')
cv2.destroyAllWindows()
# Save JSON log file.
if args['log_json']:
log_json.save(os.path.join(OUT_DIR, 'log.json'))
# Calculate and print the average FPS.
avg_fps = total_fps / frame_count
print(f"Average FPS: {avg_fps:.3f}")
if __name__ == '__main__':
args = parse_opt()
main(args)